Identification of two mammalian reductases involved in the two-carbon fatty acyl elongation cascade

被引:186
作者
Moon, YA
Horton, JD
机构
[1] Univ Texas, SW Med Ctr, Dept Internal Med, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Mol Genet, Dallas, TX 75390 USA
关键词
D O I
10.1074/jbc.M211684200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The de novo synthesis of fatty acids occurs in two distinct cellular compartments. Palmitate (16:0) is synthesized from acetyl-CoA and malonyl-CoA in the cytoplasm by the enzymes acetyl-CoA carboxylase 1 and fatty acid synthase. The synthesis of fatty acids longer than 16 carbons takes place in microsomes and utilizes malonyl-CoA as the carbon source. Each two-carbon addition requires four sequential reactions: condensation, reduction, dehydration, and a final reduction to form the elongated fatty acyl-CoA. The initial condensation reaction is the regulated and rate-controlling step in microsomal fatty acyl elongation. We previously reported the cDNA cloning and characterization of a murine long chain fatty acyl elongase.(LCE) (1). Overexpression of LCE in cells resulted in the enhanced addition of two-carbon units to C12-C16 fatty acids, and evidence was provided that LCE catalyzed the initial condensation reaction of long chain fatty acid elongation. The remaining three enzymes in the elongation reaction have not been identified in mammals. Here, we report the identification and characterization of two mammalian enzymes that catalyze the 3-ketoacyl-CoA and trans-2,3-enoyl-CoA reduction reactions in long and very long chain fatty acid elongation, respectively.
引用
收藏
页码:7335 / 7343
页数:9
相关论文
共 34 条
[1]   A MECHANISM BY WHICH ADENOVIRUS VIRUS-ASSOCIATED RNAI CONTROLS TRANSLATION IN A TRANSIENT EXPRESSION ASSAY [J].
AKUSJARVI, G ;
SVENSSON, C ;
NYGARD, O .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (01) :549-551
[2]  
ANDERSSON S, 1989, J BIOL CHEM, V264, P16249
[3]  
APRAHAMIAN SA, 1982, COMP BIOCH PHYSL B, V71, P557
[4]   A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal β-keto-reductase [J].
Beaudoin, F ;
Gable, K ;
Sayanova, O ;
Dunn, T ;
Napier, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (13) :11481-11488
[5]   THE FATTY-ACID CHAIN ELONGATION SYSTEM OF MAMMALIAN ENDOPLASMIC-RETICULUM [J].
CINTI, DL ;
COOK, L ;
NAGI, MN ;
SUNEJA, SK .
PROGRESS IN LIPID RESEARCH, 1992, 31 (01) :1-51
[6]   MALE PSEUDOHERMAPHRODITISM CAUSED BY MUTATIONS OF TESTICULAR 17-BETA-HYDROXYSTEROID DEHYDROGENASE-3 [J].
GEISSLER, WM ;
DAVIS, DL ;
WU, L ;
BRADSHAW, KD ;
PATEL, S ;
MENDONCA, BB ;
ELLISTON, KO ;
WILSON, JD ;
RUSSELL, DW ;
ANDERSSON, S .
NATURE GENETICS, 1994, 7 (01) :34-39
[7]   Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis [J].
Goldstein, JL ;
Rawson, RB ;
Brown, MS .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 397 (02) :139-148
[8]   The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase [J].
Han, GS ;
Gable, K ;
Kohlwein, SD ;
Beaudoin, F ;
Napier, JA ;
Dunn, TM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (38) :35440-35449
[9]   Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice [J].
Horton, JD ;
Bashmakov, Y ;
Shimomura, I ;
Shimano, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :5987-5992
[10]   SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver [J].
Horton, JD ;
Goldstein, JL ;
Brown, MS .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 109 (09) :1125-1131