Reachability of chaotic dynamic systems

被引:8
作者
Alleyne, A [1 ]
机构
[1] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
关键词
D O I
10.1103/PhysRevLett.80.3751
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work focuses on the ability of any feedback approach to control a given chaotic system. The concept of reachability for nonlinear systems is presented in a differential geometric framework. This concept is used to examine the ability of any perturbation signal to redirect the system's trajectory flow within its phase space. The structure of the controlling input and its global relation to the underlying dynamics of the system are crucial for the ability to effectively control the system within the phase space. The concepts are illustrated on a well known example: the Lorenz system.
引用
收藏
页码:3751 / 3754
页数:4
相关论文
共 11 条
  • [1] CONTINUOUS FEEDBACK APPROACH FOR CONTROLLING CHAOS
    CHEN, YH
    CHOU, MY
    [J]. PHYSICAL REVIEW E, 1994, 50 (03): : 2331 - 2334
  • [2] CONTROLLING CHAOS USING DIFFERENTIAL GEOMETRIC-METHOD
    FUH, CC
    TUNG, PC
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (16) : 2952 - 2955
  • [3] Stabilization of chaotic dynamics: A modern control approach
    Hammad, A
    Jonckheere, E
    Cheng, CY
    Bhajekar, S
    Chien, CC
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1996, 64 (04) : 663 - 677
  • [4] ISIDORI A, 1995, NONLINERA CONTROL SY
  • [5] Controlling chaos via state feedback cancellation under a noisy environment
    Liaw, YM
    Tung, PC
    [J]. PHYSICS LETTERS A, 1996, 211 (06) : 350 - 356
  • [6] LUCE R, 1991, INT S NUM M, V97, P257
  • [7] CONTROLLING CHAOS
    OTT, E
    GREBOGI, C
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (11) : 1196 - 1199
  • [8] Ott E., 1994, COPING CHAOS ANAL CH
  • [9] Strogatz S.H., 1994, NONLINEAR DYNAMICS C
  • [10] VIDYASAGAR M, 1993, NONLINEAR SYSTEMS AN