Prediction and assignment of function for a divergent N-succinyl amino acid racemase

被引:74
作者
Song, Ling
Kalyanaraman, Chakrapani
Fedorov, Alexander A.
Fedorov, Elena V.
Glasner, Margaret E.
Brown, Shoshana
Imker, Heidi J.
Babbitt, Patricia C.
Almo, Steven C.
Jacobson, Matthew P.
Gerlt, John A.
机构
[1] Univ Illinois, Dept Chem & Biochem, Urbana, IL 61801 USA
[2] Univ Calif San Francisco, Sch Pharm, Dept Pharmaceut Chem, San Francisco, CA 94158 USA
[3] Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA
[4] Univ Calif San Francisco, Sch Pharm, Dept Biopharmaceut Sci, San Francisco, CA 94158 USA
[5] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA
关键词
D O I
10.1038/nchembio.2007.11
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The protein databases contain many proteins with unknown function. A computational approach for predicting ligand specificity that requires only the sequence of the unknown protein would be valuable for directing experiment-based assignment of function. We focused on a family of unknown proteins in the mechanistically diverse enolase superfamily and used two approaches to assign function: (i) enzymatic assays using libraries of potential substrates, and (ii) in silico docking of the same libraries using a homology model based on the most similar (35% sequence identity) characterized protein. The results matched closely; an experimentally determined structure confirmed the predicted structure of the substrate-liganded complex. We assigned the N-succinyl arginine/lysine racemase function to the family, correcting the annotation (L-Ala-D/L-Glu epimerase) based on the function of the most similar characterized homolog. These studies establish that ligand docking to a homology model can facilitate functional assignment of unknown proteins by restricting the identities of the possible substrates that must be experimentally tested.
引用
收藏
页码:486 / 491
页数:6
相关论文
共 28 条
[1]  
Adams Michael, 2004, Journal of Structural and Functional Genomics, V5, P1, DOI 10.1023/B:JSFG.0000029244.65028.71
[2]   The enolase superfamily: A general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids [J].
Babbitt, PC ;
Hasson, MS ;
Wedekind, JE ;
Palmer, DRJ ;
Barrett, WC ;
Reed, GH ;
Rayment, I ;
Ringe, D ;
Kenyon, GL ;
Gerlt, JA .
BIOCHEMISTRY, 1996, 35 (51) :16489-16501
[3]  
BRUGNER AT, 1998, ACTA CRYSTALLOGR D, V54, P905
[4]   New avenues in protein function prediction [J].
Friedberg, Iddo ;
Jambon, Martin ;
Godzik, Adam .
PROTEIN SCIENCE, 2006, 15 (06) :1527-1529
[5]   Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity [J].
Gerlt, JA ;
Babbitt, PC ;
Rayment, I .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2005, 433 (01) :59-70
[6]   Evolution of structure and function in the o-succinylbenzoate synthase/N-acylamino acid racemase family of the enolase superfamily [J].
Glasner, Margaret E. ;
Fayazmanesh, Nima ;
Chiang, Ranyee A. ;
Sakai, Ayano ;
Jacobson, Matthew P. ;
Gerlt, John A. ;
Babbitt, Patricia C. .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 360 (01) :228-250
[7]   Evolution of enzymatic activities in the enolase superfamily:: Crystal structures of the L-Ala-D/L-Glu epimerases from Escherichia coli and Bacillus subtilis [J].
Gulick, AM ;
Schmidt, DMZ ;
Gerlt, JA ;
Rayment, I .
BIOCHEMISTRY, 2001, 40 (51) :15716-15724
[8]   Evolution of an enzyme active site: The structure of a new crystal form of muconate lactonizing enzyme compared with mandelate racemase and enolase [J].
Hasson, MS ;
Schlichting, I ;
Moulai, J ;
Taylor, K ;
Barrett, W ;
Kenyon, GL ;
Babbitt, PC ;
Gerlt, JA ;
Petsko, GA ;
Ringe, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (18) :10396-10401
[9]   On the role of the crystal environment in determining protein side-chain conformations [J].
Jacobson, MP ;
Friesner, RA ;
Xiang, ZX ;
Honig, B .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 320 (03) :597-608
[10]  
JONES TA, 1985, METHOD ENZYMOL, V115, P157