Continuous finite-time stabilization of the translational and rotational double integrators

被引:1476
作者
Bhat, SP [1 ]
Bernstein, DS
机构
[1] Indian Inst Technol, Dept Aerosp Engn, Bombay 400076, Maharashtra, India
[2] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
关键词
finite-time stability; non-lipschitzian dynamics; stability; stabilization;
D O I
10.1109/9.668834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A class of bounded continuous time-invariant finite-time stabilizing feedback laws is given for the double integrator. Lyapunov theory is used to prove finite-time convergence. For the rotational double integrator, these controllers are modified to obtain finite-time-stabilizing feedbacks that avoid "unwinding."
引用
收藏
页码:678 / 682
页数:5
相关论文
共 16 条
[1]  
Athans M., 1966, Optimal Control: An Introduction to the Theory and Its Applications
[2]   GIBBS PHENOMENON IN STRUCTURAL CONTROL [J].
BARUH, H ;
TADIKONDA, SSK .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (01) :51-58
[3]  
BHAT SP, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P1831
[4]   Continuous, bounded, finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1996, :185-190
[5]   DESIGN OF FINITE-TIME SETTLING REGULATORS FOR LINEAR-SYSTEMS [J].
CHOURA, S .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1994, 116 (04) :602-609
[6]  
Filippov A. F., DIFF EQUAT+, V18
[7]  
Flytzani-Stephanopoulos M., 1980, THEORY OSCILLATORS, V64, P346
[9]   FINITE-TIME CONTROLLERS [J].
HAIMO, VT .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (04) :760-770
[10]  
Hartman P., 1982, Ordinary Differential Equations