A General Database for Main Group Thermochemistry, Kinetics, and Noncovalent Interactions - Assessment of Common and Reparameterized (meta-)GGA Density Functionals

被引:386
作者
Goerigk, Lars [1 ,2 ]
Grimme, Stefan [1 ]
机构
[1] Univ Munster, Inst Organ Chem, D-48149 Munster, Germany
[2] Univ Munster, NRW Grad Sch Chem, D-48149 Munster, Germany
关键词
AUXILIARY BASIS-SETS; PLESSET PERTURBATION-THEORY; ZETA VALENCE QUALITY; GAUSSIAN-BASIS SETS; AB-INITIO; GRADIENT APPROXIMATION; CORRELATION-ENERGY; CONSTRAINT SATISFACTION; ADJUSTABLE-PARAMETERS; PERICYCLIC-REACTIONS;
D O I
10.1021/ct900489g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a quantum chemistry benchmark database for general main group thermochemistry, kinetics, and noncovalent interactions (GMTKN24). It is an unprecedented compilation of 24 different, chemically relevant subsets that either are taken from already existing databases or are presented here for the first time. The complete set involves a total of 1.049 atomic and molecular single point calculations and comprises 731 data points (relative chemical energies) based on accurate theoretical or experimental reference values. The usefulness of the GMTKN24 database is shown by applying common density functionals on the (meta-)generalized gradient approximation (GGA), hybrid-GGA, and double-hybrid-GGA levels to it, including an empirical London dispersion correction. Furthermore, we refitted the functional parameters of four (meta-)GGA functionals based on a fit set containing 143 systems, comprising seven chemically different problems. Validation against the GMTKN24 and the molecular structure (bond lengths) databases shows that the reparameterization does not change bond lengths much, whereas the description of energetic properties is more prone to the parameters' values. The empirical dispersion correction also often improves for conventional thermodynamic problems and makes a functional's performance more uniform over the entire database. The refitted functionals typically have a lower mean absolute deviation for the majority of subsets in the proposed GMTKN24 set. This, however, is also often accompanied at the expense of poor performance for a few other important subsets. Thus, creating a broadly applicable (and overall better) functional by just reparameterizing existing ones seems to be difficult. Nevertheless, this benchmark study. reveals that a reoptimized (i.e., empirical) version of the TIPSS-D functional (oTPSS-D) performs well for a variety of problems and may meet the standards of an improved functional. We propose validation against this new compilation of benchmark sets as a definitive way to evaluate a new quantum chemical method's true performance.
引用
收藏
页码:107 / 126
页数:20
相关论文
共 109 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:: The mPW and mPW1PW models [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (02) :664-675
[3]   Physically motivated density functionals with improved performances: The modified Perdew-Burke-Ernzerhof model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (14) :5933-5940
[4]   ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE [J].
AHLRICHS, R ;
BAR, M ;
HASER, M ;
HORN, H ;
KOLMEL, C .
CHEMICAL PHYSICS LETTERS, 1989, 162 (03) :165-169
[5]  
Ahlrichs R., 2002, TURBOMOLE VERSION 5
[6]  
[Anonymous], NIST STAND REF DAT
[7]  
[Anonymous], P 21 ANN INT S EL ST
[8]   Incorrect dissociation behavior of radical ions in density functional calculations [J].
Bally, T ;
Sastry, GN .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (43) :7923-7925
[9]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[10]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100