Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature

被引:148
作者
Ebara, M
Yamato, M
Hirose, M
Aoyagi, T
Kikuchi, A
Sakai, K
Okano, T
机构
[1] Tokyo Womens Med Univ, Inst Adv Biomed Engn & Sci, Shinjuku Ku, Tokyo 1628666, Japan
[2] Waseda Univ, Dept Appl Chem, Shinjuku Ku, Tokyo 1698555, Japan
关键词
D O I
10.1021/bm025692t
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acrylic acid (AAc) has been utilized to introduce reactive carboxyl groups to a temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm). However, AAc introduction shifts the copolymer phase transition temperatures higher and dampens the steep homopolymer phase transition with increasing AAc content. We previously synthesized 2-carboxyisopropylacrylamide (CIPAAm) having both a similar side chain structure to IPAAm and a functional carboxylate group in order to overcome these shortcomings. In the present study, these copolymers, grafted onto cell culture plastic, were assessed for cell adhesion control using their phase transition. AAc introduction to PIPAAm-grafted surfaces resulted in excessive surface hydration and hindered cell spreading in culture at 37 degreesC. In contrast, CIPAAm-containing copolymer-grafted surfaces exhibited relatively weak hydrophobicity similar to both homopolymer PIPAAm-grafted surfaces as well as commercial ungrafted tissue culture polystyrene dish surfaces. Cells adhered and spread well on these surfaces at 37 degreesC in culture. As observed previously on PIPAAm-grafted surfaces, cells were spontaneously detached from the copolymer-grafted surfaces by reducing culture temperature. Cell detachment was accelerated on the CIPAAm copolymer-grafted surfaces compared to pure IPAAm surfaces, suggesting that hydrophilic carboxyl group microenvironment in the monomer and polymer is important to accelerate grafted surface hydration below the lower critical solution temperature, detaching cells.
引用
收藏
页码:344 / 349
页数:6
相关论文
共 29 条
[1]   Novel bifunctional polymer with reactivity and temperature sensitivity [J].
Aoyagi, T ;
Ebara, M ;
Sakai, K ;
Sakurai, Y ;
Okano, T .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (01) :101-110
[2]   GRAFT-COPOLYMERS THAT EXHIBIT TEMPERATURE-INDUCED PHASE-TRANSITIONS OVER A WIDE-RANGE OF PH [J].
CHEN, GH ;
HOFFMAN, AS .
NATURE, 1995, 373 (6509) :49-52
[3]   Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield [J].
Ding, ZL ;
Fong, RB ;
Long, CJ ;
Stayton, PS ;
Hoffman, AS .
NATURE, 2001, 411 (6833) :59-62
[4]   Introducing reactive carboxyl side chains retains phase transition temperature sensitivity in N-isopropylacrylamide copolymer gels [J].
Ebara, M ;
Aoyagi, T ;
Sakai, K ;
Okano, T .
MACROMOLECULES, 2000, 33 (22) :8312-8316
[5]  
Ebara M, 2001, J POLYM SCI POL CHEM, V39, P335, DOI 10.1002/1099-0518(20010201)39:3<335::AID-POLA1000>3.0.CO
[6]  
2-H
[7]   EFFECT OF COMONOMER HYDROPHILICITY AND IONIZATION ON THE LOWER CRITICAL SOLUTION TEMPERATURE OF N-ISOPROPYLACRYLAMIDE COPOLYMERS [J].
FEIL, H ;
BAE, YH ;
FEIJEN, J ;
KIM, SW .
MACROMOLECULES, 1993, 26 (10) :2496-2500
[8]   The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion [J].
Houseman, BT ;
Mrksich, M .
BIOMATERIALS, 2001, 22 (09) :943-955
[9]   Effect of pH on the lower critical solution temperatures of random copolymers of N-isopropylacrylamide and acrylic acid [J].
Jones, MS .
EUROPEAN POLYMER JOURNAL, 1999, 35 (05) :795-801
[10]   Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains [J].
Kaneko, Y ;
Nakamura, S ;
Sakai, K ;
Aoyagi, T ;
Kikuchi, A ;
Sakurai, Y ;
Okano, T .
MACROMOLECULES, 1998, 31 (18) :6099-6105