Arteriogenesis - The development and growth of collateral arteries

被引:243
作者
Helisch, A [1 ]
Schaper, W [1 ]
机构
[1] Max Planck Inst Physiol & Clin Res, Dept Expt Cardiol, D-61231 Bad Nauheim, Germany
关键词
angiogenesis; arteriogenesis; collateral vessels; ischemic vascular disease;
D O I
10.1038/sj.mn.7800173
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In patients with atherosclerotic vascular diseases, collateral vessels bypassing major arterial obstructions have frequently been observed. This may explain why some patients remain without symptoms or signs of ischemia. The term "arteriogenesis" was introduced to differentiate the formation of collateral arteries from angiogenesis, which mainly occurs in the ischemic, collateral flow-dependent tissue. Many observations in various animal models and humans support that the remodeling of preexisting collateral vessels is the mechanism of collateral artery formation. This remodeling process seems to be mainly flow-mediated. It involves endothelial cell activation, basal membrane degradation, leukocyte invasion, proliferation of vascular cells, neointima formation (in most species studied), and changes of the extracellular matrix. The contribution of ischemia to arteriogenesis is still unclear, but arteriogenesis clearly can occur in the absence of any significant ischemia. It is questionable, whether collateral arteries also form de novo in ischemic vascular diseases. A better understanding of the mechanisms of arteriogenesis will be important for the design of more effective strategies for the treatment of patients with ischemic vascular diseases.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 142 条
[1]  
Abbruzzese TA, 1998, SURGERY, V124, P328, DOI 10.1067/msy.1998.91338
[2]   THE COLLATERAL CIRCULATION - RESPONSE TO ISCHEMIA [J].
ABRAMS, HL .
AMERICAN JOURNAL OF ROENTGENOLOGY, 1983, 140 (06) :1051-1063
[3]  
*AM HEART ASS, 2001, 2002 HEART STROK STA
[4]  
[Anonymous], PATHOPHYSIOLOGY MYOC
[5]   Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb [J].
Arras, M ;
Ito, WD ;
Scholz, D ;
Winkler, B ;
Schaper, J ;
Schaper, W .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (01) :40-50
[6]   Isolation of putative progenitor endothelial cells for angiogenesis [J].
Asahara, T ;
Murohara, T ;
Sullivan, A ;
Silver, M ;
vanderZee, R ;
Li, T ;
Witzenbichler, B ;
Schatteman, G ;
Isner, JM .
SCIENCE, 1997, 275 (5302) :964-967
[7]   Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization [J].
Asahara, T ;
Masuda, H ;
Takahashi, T ;
Kalka, C ;
Pastore, C ;
Silver, M ;
Kearne, M ;
Magner, M ;
Isner, JM .
CIRCULATION RESEARCH, 1999, 85 (03) :221-228
[8]   ANGIOGENIC-INDUCED ENHANCEMENT OF COLLATERAL BLOOD-FLOW TO ISCHEMIC MYOCARDIUM BY VASCULAR ENDOTHELIAL GROWTH-FACTOR IN DOGS [J].
BANAI, S ;
JAKLITSCH, MT ;
SHOU, M ;
LAZAROUS, DF ;
SCHEINOWITZ, M ;
BIRO, S ;
EPSTEIN, SE ;
UNGER, EF .
CIRCULATION, 1994, 89 (05) :2183-2189
[9]   THE COLLATERALS OF THE CORONARY ARTERIES IN NORMAL AND PATHOLOGIC HEARTS [J].
BAROLDI, G ;
MANTERO, O ;
SCOMAZZONI, G .
CIRCULATION RESEARCH, 1956, 4 (02) :223-229
[10]  
BAROLDI G, 1967, CORONARY CIRCULATION