New cell lines from mouse epiblast share defining features with human embryonic stem cells

被引:1606
作者
Tesar, Paul J.
Chenoweth, Josh G.
Brook, Frances A.
Davies, Timothy J.
Evans, Edward P.
Mack, David L.
Gardner, Richard L.
McKay, Ronald D. G. [1 ]
机构
[1] NINDS, Mol Biol Lab, NIH, Bethesda, MD 20892 USA
[2] Univ Oxford, Dept Zool, Mammalian Dev Lab, Oxford OX1 3PS, England
[3] NCI, Stem Cell Biol Sect, NIH, Bethesda, MD 20892 USA
基金
英国惠康基金;
关键词
D O I
10.1038/nature05972
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The application of human embryonic stem (ES) cells in medicine and biology has an inherent reliance on understanding the starting cell population. Human ES cells differ from mouse ES cells and the specific embryonic origin of both cell types is unclear. Previous work suggested that mouse ES cells could only be obtained from the embryo before implantation in the uterus(1-5). Here we show that cell lines can be derived from the epiblast, a tissue of the post-implantation embryo that generates the embryo proper. These cells, which we refer to as EpiSCs (post-implantation epiblast-derived stem cells), express transcription factors known to regulate pluripotency, maintain their genomic integrity, and robustly differentiate into the major somatic cell types as well as primordial germ cells. The EpiSC lines are distinct from mouse ES cells in their epigenetic state and the signals controlling their differentiation. Furthermore, EpiSC and human ES cells share patterns of gene expression and signalling responses that normally function in the epiblast. These results show that epiblast cells can be maintained as stable cell lines and interrogated to understand how pluripotent cells generate distinct fates during early development.
引用
收藏
页码:196 / U10
页数:7
相关论文
共 38 条
[1]  
Androutsellis-Theotokis A, 2006, NATURE, V442, P823, DOI 10.1038/nature04940
[2]   Chromatin signatures of pluripotent cell lines [J].
Azuara, V ;
Perry, P ;
Sauer, S ;
Spivakov, M ;
Jorgensen, HF ;
John, RM ;
Gouti, M ;
Casanova, M ;
Warnes, G ;
Merkenschlager, M ;
Fisher, AG .
NATURE CELL BIOLOGY, 2006, 8 (05) :532-U189
[3]  
BEDDINGTON RS, 1987, ISOLATION CULTURE MA
[4]   A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J].
Bernstein, BE ;
Mikkelsen, TS ;
Xie, XH ;
Kamal, M ;
Huebert, DJ ;
Cuff, J ;
Fry, B ;
Meissner, A ;
Wernig, M ;
Plath, K ;
Jaenisch, R ;
Wagschal, A ;
Feil, R ;
Schreiber, SL ;
Lander, ES .
CELL, 2006, 125 (02) :315-326
[5]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[6]   The origin and efficient derivation of embryonic stem cells in the mouse [J].
Brook, FA ;
Gardner, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5709-5712
[7]   Assessing self-renewal and differentiation in human embryonic stem cell lines [J].
Cai, Jingli ;
Chen, Jia ;
Liu, Ying ;
Miura, Takumi ;
Luo, Yongquan ;
Loring, Jeanne F. ;
Freed, William J. ;
Rao, Mahendra S. ;
Zeng, Xianmin .
STEM CELLS, 2006, 24 (03) :516-530
[8]   Absence of Nodal signaling promotes precocious neural differentiation in the mouse embryo [J].
Camus, Anne ;
Perea-Gomez, Aitana ;
Moreau, Anne ;
Collignon, Jerome .
DEVELOPMENTAL BIOLOGY, 2006, 295 (02) :743-755
[9]   Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres [J].
Chung, Y ;
Klimanskaya, I ;
Becker, S ;
Marh, J ;
Lu, SJ ;
Johnson, J ;
Meisner, L ;
Lanza, R .
NATURE, 2006, 439 (7073) :216-219
[10]   LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells [J].
Dahéron, L ;
Opitz, SL ;
Zaehres, H ;
Lensch, WM ;
Andrews, PW ;
Itskovitz-Eldor, J ;
Daley, GQ .
STEM CELLS, 2004, 22 (05) :770-778