Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field

被引:103
作者
Krüger, M
Frenzel, P
Kemnitz, D
Conrad, R
机构
[1] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[2] Max Planck Inst Marine Microbiol, D-28358 Bremen, Germany
关键词
methane production; pathways; Archaea; population dynamics; T-RFLP; quantitative PCR;
D O I
10.1016/j.femsec.2004.09.004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Methane production was studied in an Italian rice field over two consecutive years (1998, 1999) by measuring the rates of total and acetate-dependent methanogenesis in soil and root samples. Population dynamics of methanogens were followed by terminal restriction fragment length polymorphism and real-time PCR targeting archaeal SSU rRNA genes. Rates of total and acetate-dependent methanogenesis in soil increased during the season, reached a maximum at about 70-80 days after flooding and then decreased again. In contrast, the size of the archaeal community remained relatively constant. Therefore, the seasonal changes in the methanogenic processes were probably not caused by changes in the size of the methanogenic community but in its activity. During the 1998/1999 winter period, a slight decrease in archaeal cell numbers was found. In both years, the dominant groups were methanogens affiliated with Rice cluster I, Methanosaetaceae, Methanosarcinaceae and Methanobacteriaceae. Correspondence analysis showed, however, that the archaeal community structure was different in 1998 and 1999. Methanogens with potential acetoclastic activity made up a larger fraction of the total archaeal community in 1999 (32-53%) than in 1998 (20-32%). Furthermore, the frequency of Methanosaetaceae relative to Methanosarcinaceae was significantly higher in 1999 than in 1998. This difference could be explained by the much lower soil acetate concentrations in 1999, to which Methanosaetaceae are physiologically better adapted than Methanosarcinaceae. Over the season, however, the composition of the archaeal community remained relatively constant and thus did not reflect the observed seasonal change in CH4 production activity. The analysis of rice root samples in 1999 showed that the archaeal community structure on the roots was similar to that in soil but with acetoclastic methanogens being relatively less common. This observation is in agreement with domination of CH4 production by H-2/CO2-dependent methanogenesis on roots. Our study provided a link between size, structure and function of the methanogenic community in an Italian rice field. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:323 / 331
页数:9
相关论文
共 42 条
[1]   Effect of application of rice straw and cellulose on methane emission and biological nitrogen fixation in a subtropical paddy field .2. Enumeration of populations of methanogenic bacteria by most probable number method and roll tube method [J].
Adachi, K ;
Oyediran, G ;
Senboku, T .
SOIL SCIENCE AND PLANT NUTRITION, 1996, 42 (04) :713-723
[2]   Effects of ammonium-based fertilisation on microbial processes involved in methane emission from soils planted with rice [J].
Bodelier, PLE ;
Hahn, AP ;
Arth, IR ;
Frenzel, P .
BIOGEOCHEMISTRY, 2000, 51 (03) :225-257
[3]   Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii [J].
Bult, CJ ;
White, O ;
Olsen, GJ ;
Zhou, LX ;
Fleischmann, RD ;
Sutton, GG ;
Blake, JA ;
FitzGerald, LM ;
Clayton, RA ;
Gocayne, JD ;
Kerlavage, AR ;
Dougherty, BA ;
Tomb, JF ;
Adams, MD ;
Reich, CI ;
Overbeek, R ;
Kirkness, EF ;
Weinstock, KG ;
Merrick, JM ;
Glodek, A ;
Scott, JL ;
Geoghagen, NSM ;
Weidman, JF ;
Fuhrmann, JL ;
Nguyen, D ;
Utterback, TR ;
Kelley, JM ;
Peterson, JD ;
Sadow, PW ;
Hanna, MC ;
Cotton, MD ;
Roberts, KM ;
Hurst, MA ;
Kaine, BP ;
Borodovsky, M ;
Klenk, HP ;
Fraser, CM ;
Smith, HO ;
Woese, CR ;
Venter, JC .
SCIENCE, 1996, 273 (5278) :1058-1073
[4]  
Chin KJ, 1999, APPL ENVIRON MICROB, V65, P2341
[5]   Archaeal community structure and pathway of methane formation on rice roots [J].
Chin, KJ ;
Lueders, T ;
Friedrich, MW ;
Klose, M ;
Conrad, R .
MICROBIAL ECOLOGY, 2004, 47 (01) :59-67
[6]   Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments [J].
Conrad, R .
FEMS MICROBIOLOGY ECOLOGY, 1999, 28 (03) :193-202
[7]   TEMPORAL CHANGE OF GAS METABOLISM BY HYDROGEN-SYNTROPHIC METHANOGENIC BACTERIAL ASSOCIATIONS IN ANOXIC PADDY SOIL [J].
CONRAD, R ;
MAYER, HP ;
WUST, M .
FEMS MICROBIOLOGY ECOLOGY, 1989, 62 (04) :265-273
[8]   Pathway of CH4 formation in anoxic rice field soil and rice roots determined by 13C-stable isotope fractionation [J].
Conrad, R ;
Klose, M ;
Claus, P .
CHEMOSPHERE, 2002, 47 (08) :797-806
[9]  
Conrad R, 1999, FEMS MICROBIOL ECOL, V30, P47, DOI 10.1111/j.1574-6941.1999.tb00634.x
[10]   Effect of a late season urea fertilization on methane emission from a rice field in Italy [J].
Dan, JG ;
Krüger, M ;
Frenzel, P ;
Conrad, R .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2001, 83 (1-2) :191-199