sulfatase;
endoplasmic reticulum;
protein modification;
protein transport;
multiple sulfatase deficiency;
D O I:
10.1016/S0014-5793(98)00065-9
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Sulfatases undergo an unusual protein modification leading to conversion of a specific cysteine residue into alpha-formylglycine. This conversion is essential for catalytic activity. In arylsulfatase A the alpha-formylglycine is generated inside the endoplasmic reticulum at a]ate stage of protein translocation. Using in vitro translation in the presence of transport-competent microsomes we found that arylsulfatase B is also modified in a similar way by the formylglycine-generating machinery. Modification depended on protein transport and on the correct position of the relevant cysteine. Arylsulfatase A and B did not compete for modification, as became apparent in co-expression experiments. This could argue for an association of the modification machinery with the protein translocation apparatus. (C) 1998 Federation of European Biochemical Societies.