CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band

被引:135
作者
Geis, M. W. [1 ]
Spector, S. J.
Grein, M. E.
Schulein, R. T.
Yoon, J. U.
Lennon, D. M.
Deneault, S.
Gan, F.
Kaertner, F. X.
Lyszczarz, T. M.
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
integrated optoelectronics; near-infrared; photodetectors; silicon (Si) optoelectronics; silicon (Si) waveguide;
D O I
10.1109/LPT.2006.890109
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Submicrometer silicon photodiode waveguides, fabricated on silicon-on-insulator substrates, have photoresponse from < 1270 to 1740 nm (0.8 AW(-1) at 1550 nm) and a 3-dB bandwidth of 10 to 20 GHz. The p-i-n photodiode waveguide consists of an intrinsic waveguide 500 x 250 nm where the optical mode is confined and two thin, 50-nm-thick, doped Si wings that extend 5 mu m out from either side of the waveguide. The Si wings, which are doped one p-type and the other n-type, make electric contact to the waveguide with minimal effect on the optical mode. The edges of the wings are metalized to increase electrical conductivity. Ion implantation of Si+ 1 X 10(13) cm(-2) at 190 keV into the waveguide increases the optical absorption from 2-3 dB - cm(-1) to 200-100 dB . cm(-1) and causes the generation of a photocurrent when the waveguide is illuminated with subbandgap radiation. The diodes are not damaged by annealing to 450 degrees C for 15 s or 300 degrees C for 15 min. The photoresponse and thermal stability is believed due to an oxygen stabilized divacancy complex formed during ion implantation.
引用
收藏
页码:152 / 154
页数:3
相关论文
共 11 条
[1]   Separation of silicon wafers by the smart-cut method [J].
Bruel, M .
MATERIALS RESEARCH INNOVATIONS, 1999, 3 (01) :9-13
[2]   Annealing of electron-, proton-, and ion-produced vacancies in Si [J].
Dannefaer, S ;
Avalos, V ;
Kerr, D ;
Poirier, R ;
Shmarovoz, V ;
Zhang, SH .
PHYSICAL REVIEW B, 2006, 73 (11)
[3]   Particularities of the formation of radiation defects in silicon with low and high concentrations of oxygen [J].
Dolgolenko, A. P. ;
Litovehenko, P. G. ;
Varentsov, M. D. ;
Gaidar, G. P. ;
Litovchenko, A. P. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (08) :1842-1852
[4]   INFRARED ABSORPTION AND PHOTOCONDUCTIVITY IN IRRADIATED SILICON [J].
FAN, HY ;
RAMDAS, AK .
JOURNAL OF APPLIED PHYSICS, 1959, 30 (08) :1127-1134
[5]  
GEIS MW, 2006, P OPT SOC AM INT PHO
[6]  
Kimerling LC, 2004, TOP APPL PHYS, V94, P89
[7]   Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response [J].
Knights, A. P. ;
Bradley, J. D. B. ;
Gou, S. H. ;
Jessop, P. E. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2006, 24 (03) :783-786
[8]   Annealing of defects in irradiated silicon detector materials with high oxygen content [J].
Mikelsen, M ;
Monakhov, EV ;
Alfieri, G ;
Avset, BS ;
Härkönen, J ;
Svensson, BG .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (22) :S2247-S2253
[9]   Divacancy annealing in Si: Influence of hydrogen [J].
Monakhov, EV ;
Ulyashin, A ;
Alfieri, G ;
Kuznetsov, AY ;
Avset, BS ;
Svensson, BG .
PHYSICAL REVIEW B, 2004, 69 (15) :153202-1
[10]   Microphotonics devices based on silicon microfabrication technology [J].
Tsuchizawa, T ;
Yamada, K ;
Fukuda, H ;
Watanabe, T ;
Takahashi, J ;
Takahashi, M ;
Shoji, T ;
Tamechika, E ;
Itabashi, S ;
Morita, H .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (01) :232-240