SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib

被引:95
作者
Emanuele, S. [1 ]
Lauricella, M. [1 ]
Carlisi, D. [1 ]
Vassallo, B. [1 ]
D'Anneo, A. [1 ]
Di Fazio, P. [1 ]
Vento, R. [1 ]
Tesoriere, G. [1 ]
机构
[1] Univ Palermo, Dipartimento Sci Biochim, Policlin Palermo, Palermo, Italy
关键词
HDAC inhibitors; HepG2; cells; PHH; extrinsic and intrinsic apoptotic pathways;
D O I
10.1007/s10495-007-0063-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Histone deacetylase (HDAC) inhibitors represent a promising group of anticancer agents. This paper shows that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) stimulated at 5-10 mu M apoptosis in human hepatoma HepG2 and Huh6 cells, but was ineffective in primary human hepatocytes (PHH). In HepG2 cells SAHA induced the extrinsic apoptotic pathway, increasing the expression of both FasL and FasL receptor and causing the activation of caspase-8. Moreover, SAHA enhanced the level of Bim proteins, stimulated alternative splicing of the Bcl-X transcript with the expression of the proapoptotic Bcl-Xs isoform, induced degradation of Bid into the apoptotic factor t-Bid and dephosphorylation and inactivation of the anti-apoptotic factor Akt. Consequently, SAHA caused loss of mitochondrial transmembrane potential, release of cytochrome c from mitochondria, activation of caspase-3 and degradation of PARP. Interestingly, a combination of suboptimal doses of SAHA (1 mu M) and bortezomib (5-10 nM), a potent inhibitor of 26S proteasome, synergistically induced apoptosis in both HepG2 and Huh6 cells, but was ineffective in PHH. Combined treatment increased with synergistic effects the expression levels of c-Jun, phospho-c-Jun and FasL and the production of Bcl-Xs. These effects were accompanied by activation of Bid, caspase-8 and 3. In conclusion, SAHA stimulated apoptosis in hepatoma cells and exerted a synergistic apoptotic effect when combined with bortezomib. In contrast, these treatments were quite ineffective in inducing apoptosis in PHH. Thus, our results suggest the potential application of the SAHA/bortezomib combination in clinical trials for liver cancer.
引用
收藏
页码:1327 / 1338
页数:12
相关论文
共 51 条
[1]   Apoptosis on hepatoma cells but not on primary hepatocytes by histone deacetylase inhibitors valproate and ITF2357 [J].
Armeanu, S ;
Pathil, A ;
Venturelli, S ;
Mascagni, P ;
Weiss, TS ;
Göttlicher, M ;
Gregor, M ;
Lauer, UM ;
Bitzer, M .
JOURNAL OF HEPATOLOGY, 2005, 42 (02) :210-217
[2]   Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of Her-2 [J].
Bali, P ;
Pranpat, M ;
Swaby, R ;
Fiskus, W ;
Yamaguchi, H ;
Balasis, M ;
Rocha, K ;
Wang, HG ;
Richon, V ;
Bhalla, K .
CLINICAL CANCER RESEARCH, 2005, 11 (17) :6382-6389
[3]   Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases [J].
Barlev, NA ;
Liu, L ;
Chehab, NH ;
Mansfield, K ;
Harris, KG ;
Halazonetis, TD ;
Berger, SL .
MOLECULAR CELL, 2001, 8 (06) :1243-1254
[4]   The human SWI/SNF subunit Brm is a regulator of alternative splicing [J].
Batsché, E ;
Yaniv, M ;
Muchardt, C .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (01) :22-29
[5]   Growth inhibition by the mammalian SWI-SNF subunit Brm is regulated by acetylation [J].
Bourachot, B ;
Yaniv, M ;
Muchardt, C .
EMBO JOURNAL, 2003, 22 (24) :6505-6515
[6]   Bortezomib induces in HepG2 cells IκBα degradation mediated by caspase-8 [J].
Calvaruso, Giuseppe ;
Giuliano, Michela ;
Portanova, Patrizia ;
De Blasio, Anna ;
Vento, Renza ;
Tesoriere, Giovanni .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 2006, 287 (1-2) :13-19
[7]   De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells -: Dependence on protein phosphatase-1 [J].
Chalfant, CE ;
Rathman, K ;
Pinkerman, RL ;
Wood, RE ;
Obeid, LM ;
Ogretmen, B ;
Hannun, YA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (15) :12587-12595
[8]   Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes [J].
Chen, CS ;
Weng, SC ;
Tseng, PH ;
Lin, HP ;
Chen, CS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (46) :38879-38887
[9]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[10]   QUANTITATIVE-ANALYSIS OF DOSE-EFFECT RELATIONSHIPS - THE COMBINED EFFECTS OF MULTIPLE-DRUGS OR ENZYME-INHIBITORS [J].
CHOU, TC ;
TALALAY, P .
ADVANCES IN ENZYME REGULATION, 1984, 22 :27-55