Discretization and numerical schemes for steady kinetic model equations

被引:8
作者
Babovsky, H [1 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
关键词
steady kinetic equation; numerical schemes;
D O I
10.1016/S0898-1221(97)00256-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are still many open questions concerning the relationship between (steady) kinetic equations, random particle games designed for these equations, and transitions, e.g., to fluid dynamics and turbulence phenomena. The paper presents some first steps into the derivation of models which on one hand may be used for the design of efficient numerical schemes for steady gas kinetics, and on the other hand allow to study the interplay between particle schemes and physical phenomena.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 19 条
[1]  
[Anonymous], 1985, LINEARE FUNKTIONALAN
[2]   Numerical analysis of a supersonic rarefied gas flow past a flat plate [J].
Aoki, K ;
Kanba, K ;
Takata, S .
PHYSICS OF FLUIDS, 1997, 9 (04) :1144-1161
[3]   A CONVERGENCE PROOF FOR NANBU SIMULATION METHOD FOR THE FULL BOLTZMANN-EQUATION [J].
BABOVSKY, H ;
ILLNER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) :45-65
[4]  
BABOVSKY H, 1989, EUR J MECH B-FLUID, V8, P41
[5]  
Babovsky H., 1984, Transport Theory and Statistical Physics, V13, P455, DOI 10.1080/00411458408214488
[6]  
BABOVSKY H, 1994, PROGR ASTRONAUT AERO, V159, P174
[7]  
BABOVSKY H, IN PRESS J COMP APPL
[8]  
Babovsky H., 1986, Mathematical Methods in the Applied Sciences, V8, P223, DOI DOI 10.1002/MMA.1670080114
[9]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[10]  
BOBYLEV AV, 1995, 128 U KAIS LAB TECHN