The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin α9β1

被引:148
作者
Vlahakis, NE
Young, BA
Atakilit, A
Sheppard, D
机构
[1] Univ Calif San Francisco, Lung Biol Ctr, San Francisco, CA 94143 USA
[2] Mayo Clin, Coll Med, Thorac Dis Res Unit, Rochester, MN 55905 USA
关键词
D O I
10.1074/jbc.M412816200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mice homozygous for a null mutation of the integrin A subunit die 6-12 days after birth from bilateral chylothoraces suggesting an underlying defect in lymphatic development. However, until now the mechanisms by which the integrin alpha9beta1 modulates lymphangiogenesis have not been described. In this study we show that adhesion to and migration on the lymphangiogenic vascular endothelial growth factors (VEGF-C and -D) are alpha9beta1-dependent. Mouse embryonic fibroblasts and human colon carcinoma cells (SW-480) transfected to express alpha9beta1 adhered and/or migrated on both growth factors in a concentration-dependent fashion, and both adhesion and migration were abrogated by anti-alpha9beta1 function-blocking antibody. In SW-480 cells, which lack cognate receptors for VEGF-C and -D, both growth factors induced alpha9beta1-dependent Erk and paxillin phosphorylation. Human microvascular endothelial cells, which express both alpha9beta1. and VEGF-R3, also adhered to and migrated on both growth factors, and both responses were blocked by anti-alpha9beta1 antibody. Furthermore, in a solid phase binding assay recombinant VEGF-C and -D bound to purified alpha9beta1 integrin in a dose- and cation-dependent fashion showing that VEGF-C and VEGF-D are ligands for the integrin alpha9beta1. The interaction between alpha9beta1 and VEGF-C and/or -D may begin to explain the abnormal lymphatic phenotype of the alpha9 knock-out Mice.
引用
收藏
页码:4544 / 4552
页数:9
相关论文
共 49 条
[1]   Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4) [J].
Achen, MG ;
Jeltsch, M ;
Kukk, E ;
Mäkinen, T ;
Vitali, A ;
Wilks, AF ;
Alitalo, K ;
Stacker, SA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (02) :548-553
[2]   Molecular mechanisms of lymphangiogenesis in health and disease [J].
Alitalo, K ;
Carmeliet, P .
CANCER CELL, 2002, 1 (03) :219-227
[3]   Platelet-derived growth factor receptor β and vascular endothelial growth factor receptor 2 bind to the β3 integrin through its extracellular domain [J].
Borges, E ;
Jan, YW ;
Ruoslahti, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (51) :39867-39873
[4]   INTEGRIN ALPHA(V)BETA(3) ANTAGONISTS PROMOTE TUMOR-REGRESSION BY INDUCING APOPTOSIS OF ANGIOGENIC BLOOD-VESSELS [J].
BROOKS, PC ;
MONTGOMERY, AMP ;
ROSENFELD, M ;
REISFELD, RA ;
HU, TH ;
KLIER, G ;
CHERESH, DA .
CELL, 1994, 79 (07) :1157-1164
[5]   A mechanism for modulation of cellular responses to VEGF: Activation of the integrins [J].
Byzova, TV ;
Goldman, CK ;
Pampori, N ;
Thomas, KA ;
Bett, A ;
Shattil, SJ ;
Plow, EF .
MOLECULAR CELL, 2000, 6 (04) :851-860
[6]   Integrin (α6β4) regulation of eIF-4E activity and VEGF translation:: a survival mechanism for carcinoma cells [J].
Chung, J ;
Bachelder, RE ;
Lipscomb, EA ;
Shaw, LM ;
Mercurio, AM .
JOURNAL OF CELL BIOLOGY, 2002, 158 (01) :165-174
[7]   Src-mediated coupling of focal adhesion kinase to integrin αvβ5 in vascular endothelial growth factor signaling [J].
Eliceiri, BP ;
Puente, XS ;
Hood, JD ;
Stupack, DG ;
Schlaepfer, DD ;
Huang, XZZ ;
Sheppard, D ;
Cheresh, DA .
JOURNAL OF CELL BIOLOGY, 2002, 157 (01) :149-159
[8]   RGD-independent binding of integrin α9β1 to the ADAM-12 and-15 disintegrin domains mediates cell-cell interaction [J].
Eto, B ;
Puzon-McLaughlin, W ;
Sheppard, D ;
Sehara-Fujisawa, A ;
Zhang, XP ;
Takada, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (45) :34922-34930
[9]   The biology of VEGF and its receptors [J].
Ferrara, N ;
Gerber, HP ;
LeCouter, J .
NATURE MEDICINE, 2003, 9 (06) :669-676
[10]   Prespecification and plasticity: shifting mechanisms of cell migration [J].
Friedl, P .
CURRENT OPINION IN CELL BIOLOGY, 2004, 16 (01) :14-23