The regulator problem with indefinite quadratic cost for boundary control systems: the finite horizon case

被引:13
作者
Bucci, F
Pandolfi, L
机构
[1] Univ Florence, Dipartimento Matemat Applicata, I-50139 Florence, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
quadratic regulator problem; boundary control; finite horizon; hyperbolic systems; exact controllability;
D O I
10.1016/S0167-6911(99)00091-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study the finite horizon non-standard LQ-problem for an abstract dynamics, which models a large class of hyperbolic-like partial differential equations. We provide necessary/sufficient conditions for finiteness of the value function corresponding to the control problem. Sharpness of sufficient conditions is shown by means of counterexamples. The specific features of the finite, in contrast to infinite, horizon case are illustrated. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 18 条
[1]  
[Anonymous], SIB MAT ZH
[2]  
BENSOUSSAN A., 1993, Representation and Control of Infinite Dimensional Systems, V2
[3]  
Bittanti S., 2012, RICCATI EQUATION
[4]   The value function of the singular quadratic regulator problem with distributed control action [J].
Bucci, F ;
Pandolfi, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (01) :115-136
[5]  
CLEMENTS DJ, 1978, SINGULAR OPTIMAL CON
[6]   ALGEBRAIC RICCATI-EQUATIONS WITH NON-SMOOTHING OBSERVATION ARISING IN HYPERBOLIC AND EULER-BERNOULLI BOUNDARY CONTROL-PROBLEMS [J].
FLANDOLI, F ;
LASIECKA, I ;
TRIGGIANI, R .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 153 :307-382
[7]   MAXIMALLY ACHIEVABLE ACCURACY OF LINEAR OPTIMAL REGULATORS AND LINEAR OPTIMAL FILTERS [J].
KWAKERNA.H ;
SIVAN, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (01) :79-&
[8]   A LIFTING THEOREM FOR THE TIME REGULARITY OF SOLUTIONS TO ABSTRACT EQUATIONS WITH UNBOUNDED OPERATORS AND APPLICATIONS TO HYPERBOLIC-EQUATIONS [J].
LASIECKA, I ;
TRIGGIANI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (03) :745-755
[9]  
Lasiecka I., 1991, LECT NOTES CONTROL I, V164
[10]  
Li X, 1995, OPTIMAL CONTROL THEO