An all-optical trap for a gram-scale mirror

被引:298
作者
Corbitt, Thomas [1 ]
Chen, Yanbei
Innerhofer, Edith
Mueller-Ebhardt, Helge
Ottaway, David
Rehbein, Henning
Sigg, Daniel
Whitcomb, Stanley
Wipf, Christopher
Mavalvala, Nergis
机构
[1] MIT, LIGO Lab, Cambridge, MA 02139 USA
[2] Max Planck inst Gravitat Phys, D-14476 Potsdam, Germany
[3] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
[4] LIGO Hanford Observ, Richland, WA 99352 USA
[5] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
RADIATION-PRESSURE; MICROMIRROR; RESONATOR;
D O I
10.1103/PhysRevLett.98.150802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on a stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure. The technique employs two frequency-offset laser fields to simultaneously create a stiff optical restoring force and a viscous optical damping force. We show how these forces may be used to optically trap a free mass without introducing thermal noise, and we demonstrate the technique experimentally with a 1 g mirror. The observed optical spring has an inferred Young's modulus of 1.2 TPa, 20% stiffer than diamond. The trap is intrinsically cold and reaches an effective temperature of 0.8 K, limited by technical noise in our apparatus.
引用
收藏
页数:4
相关论文
共 16 条
[1]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[2]   Low quantum noise tranquilizer for Fabry-Perot interferometer [J].
Braginsky, VB ;
Vyatchanin, SP .
PHYSICS LETTERS A, 2002, 293 (5-6) :228-234
[3]   Signal recycled laser-interferometer gravitational-wave detectors as optical springs [J].
Buonanno, A ;
Chen, YB .
PHYSICAL REVIEW D, 2002, 65 (04)
[4]   Cooling of a mirror by radiation pressure [J].
Cohadon, PF ;
Heidmann, A ;
Pinard, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (16) :3174-3177
[5]   Squeezed-state source using radiation-pressure-induced rigidity [J].
Corbitt, T ;
Chen, YB ;
Khalili, F ;
Ottaway, D ;
Vyatchanin, S ;
Whitcomb, S ;
Mavalvala, N .
PHYSICAL REVIEW A, 2006, 73 (02)
[6]   Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity [J].
Corbitt, Thomas ;
Ottaway, David ;
Innerhofer, Edith ;
Pelc, Jason ;
Mavalvala, Nergis .
PHYSICAL REVIEW A, 2006, 74 (02)
[7]   Self-cooling of a micromirror by radiation pressure [J].
Gigan, S. ;
Boehm, H. R. ;
Paternostro, M. ;
Blaser, F. ;
Langer, G. ;
Hertzberg, J. B. ;
Schwab, K. C. ;
Baeuerle, D. ;
Aspelmeyer, M. ;
Zeilinger, A. .
NATURE, 2006, 444 (7115) :67-70
[8]   Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity [J].
Kippenberg, TJ ;
Rokhsari, H ;
Carmon, T ;
Scherer, A ;
Vahala, KJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (03)
[9]   High finesse opto-mechanical cavity with a movable thirty-micron-size mirror [J].
Kleckner, D ;
Marshall, W ;
de Dood, MJA ;
Dinyari, KN ;
Pors, BJ ;
Irvine, WTM ;
Bouwmeester, D .
PHYSICAL REVIEW LETTERS, 2006, 96 (17)
[10]   Sub-kelvin optical cooling of a micromechanical resonator [J].
Kleckner, Dustin ;
Bouwmeester, Dirk .
NATURE, 2006, 444 (7115) :75-78