Higher-order spatial discretisations in digital simulations. Algorithm for any multi-point first- or second derivative on an arbitrarily spaced grid

被引:18
作者
Britz, D [1 ]
机构
[1] Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark
关键词
finite difference digital simulation; general spatial derivative approximations; arbitrary grid;
D O I
10.1016/S1388-2481(03)00012-2
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A general algorithm for finite difference approximations to first and second derivatives with respect to space on an arbitrarily spaced grid is presented. The approximations can refer to any point within a given sequence of points, the total number of points being extendable to any practical value. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 1986, NUMERICAL RECIPES FO
[2]  
[Anonymous], 1964, INTEGRATION EQUATION
[5]   ON SIMPLE MOVING GRID METHODS FOR ONE-DIMENSIONAL EVOLUTIONARY PARTIAL-DIFFERENTIAL EQUATIONS [J].
BLOM, JG ;
SANZSERNA, JM ;
VERWER, JG .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 74 (01) :191-213
[6]  
BRITZ D, IN PRESS COMPUTERS C
[7]  
BRITZ D, 2003, IN PRESS ENCY ELECTR, V3
[8]  
Britz D., 1988, DIGITAL SIMULATION E
[9]   ERRORS IN USE OF NONUNIFORM MESH SYSTEMS [J].
CROWDER, HJ ;
DALTON, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1971, 7 (01) :32-&
[10]  
Feldberg S. W., 1969, ELECTROANALYTICAL CH, V3, P199