Cyclic strain modulates resistance to oxidant stress by increasing G6PDH expression in smooth muscle cells

被引:54
作者
Leopold, JA
Loscalzo, J
机构
[1] Boston Univ, Sch Med, Whitaker Cardiovasc Inst, Boston, MA 02118 USA
[2] Boston Univ, Sch Med, Evans Dept Med, Boston, MA 02118 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY | 2000年 / 279卷 / 05期
关键词
superoxide; NADH/NADPH oxidase(s); glutathione; dehydroepiandrosterone;
D O I
10.1152/ajpheart.2000.279.5.H2477
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Vascular smooth muscle cells (VSMC) may be subjected to mechanical forces, such as cyclic strain, that promote the formation of reactive oxygen species (ROS). We hypothesized that VSMC modulate this adverse milieu by increasing the expression of glucose-6-phosphate dehydrogenase (G6PDH) to maintain or restore intracellular glutathione (GSH) levels. Cyclic strain increased superoxide formation, which resulted in diminished GSH because of an increase in oxidized glutathione formation; there was also an increase in glutathione peroxidase and glutathione reductase activities. G6PDH activity and protein expression were enhanced concomitant with decreases in GSH levels and remained elevated until intracellular GSH levels were restored. To confirm the role of G6PDH in repleting GSH stores, we inhibited G6PDH activity with DHEA or inhibited enzyme expression with an antisense oligodeoxynucleotide. Diminished G6PDH activity or expression was associated with persistently depleted GSH levels and inhibition of the cyclic strain-mediated increase in glutathione reductase activity. These observations demonstrate that cyclic strain promotes oxidant stress in VSMC, which, in turn, induces G6PDH expression. When G6PDH is inhibited, GSH levels are not restored because of impaired glutathione reductase activity. These data suggest that G6PDH is a critical determinant of the response to oxidant stress in VSMC.
引用
收藏
页码:H2477 / H2485
页数:9
相关论文
共 39 条
[1]   Dehydroepiandrosterone protects tissues of streptozotocin-treated rats against oxidative stress [J].
Aragno, M ;
Tamagno, E ;
Gatto, V ;
Brignardello, E ;
Parola, S ;
Danni, O ;
Boccuzzi, G .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 26 (11-12) :1467-1474
[2]   Dehydroepiandrosterone administration prevents the oxidative damage induced by acute hyperglycemia in rats [J].
Aragno, M ;
Brignardello, E ;
Tamagno, E ;
Gatto, V ;
Danni, O ;
Boccuzzi, G .
JOURNAL OF ENDOCRINOLOGY, 1997, 155 (02) :233-240
[3]   TISSUE-SPECIFIC LEVELS OF HUMAN GLUCOSE-6-PHOSPHATE-DEHYDROGENASE CORRELATE WITH METHYLATION OF SPECIFIC SITES AT THE 3' END OF THE GENE [J].
BATTISTUZZI, G ;
DURSO, M ;
TONIOLO, D ;
PERSICO, GM ;
LUZZATTO, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (05) :1465-1469
[4]  
BENES AJ, 1985, J CELL SCI, V75, P35
[5]   Mechanical strain tightly controls fibroblast growth factor-2 release from cultured human vascular smooth muscle cells [J].
Cheng, GC ;
Briggs, WH ;
Gerson, DS ;
Libby, P ;
Grodzinsky, AJ ;
Gray, ML ;
Lee, RT .
CIRCULATION RESEARCH, 1997, 80 (01) :28-36
[6]   FLOW-MEDIATED ENDOTHELIAL MECHANOTRANSDUCTION [J].
DAVIES, PF .
PHYSIOLOGICAL REVIEWS, 1995, 75 (03) :519-560
[7]   NEW PERSPECTIVES IN HYPERTENSION RESEARCH - POTENTIALS OF VASCULAR BIOLOGY [J].
DZAU, VJ ;
GIBBONS, GH ;
MORISHITA, R ;
PRATT, RE .
HYPERTENSION, 1994, 23 (06) :1132-1140
[9]  
GAETANI GF, 1989, BLOOD, V73, P334
[10]   ON THE MECHANISM OF INTERACTION OF STEROIDS WITH HUMAN GLUCOSE-6-PHOSPHATE-DEHYDROGENASE [J].
GORDON, G ;
MACKOW, MC ;
LEVY, HR .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 318 (01) :25-29