Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte

被引:246
作者
Gobler, CJ [1 ]
Hutchins, DA [1 ]
Fisher, NS [1 ]
Cosper, EM [1 ]
Sanudo-Wilhelmy, SA [1 ]
机构
[1] SUNY Stony Brook, Mat Sci Res Ctr, Stony Brook, NY 11794 USA
关键词
D O I
10.4319/lo.1997.42.7.1492
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The potential importance of the viral lysis of phytoplankton for nutrient and carbon cycling has been acknowledged, but no quantitative assessments of this phenomenon exist. Radiotracer experiments examined the release and bioavailability of C, N, P, Fe, and Se following viral lysis of the "brown tide" chrysophyte Aureococcus anophagefferens. Photochemical effects on the dissolved-particulate partitioning and biological uptake of virally released elements were also investigated. Viral lysis of A. anophagefferens released 50% mon C and Se than uninfected control cells to the dissolved phase, while N, P, and Fe remained in the particulate phase. There was a significant inverse correlation between A. anophagefferens and bacterial densities, as well as an increase in particulate organic nitrogen levels in cultures during viral lysis. These observations indicate that released dissolved organic matter supported bacterial growth and may be a pathway by which various elements are diverted in microbial food webs. Dissolved nutrients released by viral lysis were accumulated to varying degrees by natural assemblages of marine bacteria and cultured diatoms, and vitally regenerated N and P relieved diatom nutrient limitation. During a 4-wk incubation, 80% of C and P within cell lysis debris was released to the dissolved phase, likely due to bacterial activity. Photochemical degradation of cell lysis debris enhanced dissolved levels of Se (100%) and Fe (50%) and reduced total dissolved C by 15%. Photochemistry doubled the bioavailability of virally released Se to diatoms, while decreasing the bioavailability of C to bacteria threefold. The viral lysis of an A. anophagefferens bloom in the field could release 40 mu M dissolved organic carbon and rapidly transfer other released elements to bacteria. Such occurrences may significantly affect water column chemistry, species composition, and succession within marine plankton communities.
引用
收藏
页码:1492 / 1504
页数:13
相关论文
共 72 条
[1]   BACTERIAL 5'-NUCLEOTIDASE ACTIVITY IN ESTUARINE AND COASTAL MARINE WATERS - ROLE IN PHOSPHORUS REGENERATION [J].
AMMERMAN, JW ;
AZAM, F .
LIMNOLOGY AND OCEANOGRAPHY, 1991, 36 (07) :1437-1447
[2]   Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system [J].
Amon, RMW ;
Benner, R .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1996, 60 (10) :1783-1792
[3]   Bacterial utilization of different size classes of dissolved organic matter [J].
Amon, RMW ;
Benner, R .
LIMNOLOGY AND OCEANOGRAPHY, 1996, 41 (01) :41-51
[4]   SUNLIGHT-INDUCED FORMATION OF DISSOLVED GASEOUS MERCURY IN LAKE WATERS [J].
AMYOT, M ;
MIERLE, G ;
LEAN, DRS ;
MCQUEEN, DJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (13) :2366-2371
[5]   HIGH ABUNDANCE OF VIRUSES FOUND IN AQUATIC ENVIRONMENTS [J].
BERGH, O ;
BORSHEIM, KY ;
BRATBAK, G ;
HELDAL, M .
NATURE, 1989, 340 (6233) :467-468
[6]   INCORPORATION OF VIRUSES INTO THE BUDGET OF MICROBIAL C-TRANSFER - A 1ST APPROACH [J].
BRATBAK, G ;
HELDAL, M ;
THINGSTAD, TF ;
RIEMANN, B ;
HASLUND, OH .
MARINE ECOLOGY PROGRESS SERIES, 1992, 83 (2-3) :273-280
[7]   VIRUSES AND THE MICROBIAL LOOP [J].
BRATBAK, G ;
THINGSTAD, F ;
HELDAL, M .
MICROBIAL ECOLOGY, 1994, 28 (02) :209-221
[8]   VIRAL MORTALITY OF THE MARINE ALGA EMILIANIA-HUXLEYI (HAPTOPHYCEAE) AND TERMINATION OF ALGAL BLOOMS [J].
BRATBAK, G ;
EGGE, JK ;
HELDAL, M .
MARINE ECOLOGY PROGRESS SERIES, 1993, 93 (1-2) :39-48
[9]   INTERACTIVE INFLUENCES OF BIOACTIVE TRACE-METALS ON BIOLOGICAL PRODUCTION IN OCEANIC WATERS [J].
BRULAND, KW ;
DONAT, JR ;
HUTCHINS, DA .
LIMNOLOGY AND OCEANOGRAPHY, 1991, 36 (08) :1555-1577
[10]  
CARON DA, 1989, NOVEL PHYTOPLANKTON, P263