Phosphorylation-induced Conformational Changes in the Retinoblastoma Protein Inhibit E2F Transactivation Domain Binding

被引:117
作者
Burke, Jason R. [1 ]
Deshong, Alison J. [1 ]
Pelton, Jeffrey G. [2 ]
Rubin, Seth M. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[2] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94706 USA
基金
美国国家卫生研究院;
关键词
GENE-PRODUCT; TUMOR-SUPPRESSOR; CELL-CYCLE; TRANSCRIPTION FACTOR; IMPROVED SENSITIVITY; GROWTH SUPPRESSION; CRYSTAL-STRUCTURE; COMPLEX-FORMATION; STRUCTURAL BASIS; PRB;
D O I
10.1074/jbc.M110.108167
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inactivation of the retinoblastoma protein (Rb) through phosphorylation is an important step in promoting cell cycle progression, and hyperphosphorylated Rb is commonly found in tumors. Rb phosphorylation prevents its association with the E2F transcription factor; however, the molecular basis for complex inhibition has not been established. We identify here the key phosphorylation events and conformational changes that occur in Rb to inhibit the specific association between the E2F transactivation domain (E2F(TD)) and the Rb pocket domain. Calorimetry assays demonstrate that phosphorylation of Rb reduces the affinity of E2F(TD) binding similar to 250-fold and that phosphorylation at Ser(608)/Ser(612) and Thr(356)/Thr(373) is necessary and sufficient for this effect. An NMR assay identifies phosphorylation-driven conformational changes in Rb that directly inhibit E2F(TD) binding. We find that phosphorylation at Ser(608)/Ser(612) promotes an intramolecular association between a conserved sequence in the flexible pocket linker and the pocket domain of Rb that occludes the E2F(TD) binding site. We also find that phosphorylation of Thr(356)/Thr(373) inhibits E2F(TD) binding in a manner that requires the Rb N-terminal domain. Taken together, our results suggest two distinct mechanisms for how phosphorylation of Rb modulates association between E2F(TD) and the Rb pocket and describe for the first time a function for the structured N-terminal domain in Rb inactivation.
引用
收藏
页码:16286 / 16293
页数:8
相关论文
共 37 条
[1]  
Adams P.D., 2001, Biochimica et Biophysica Acta, V1471, P123
[2]  
Brown VD, 1999, MOL CELL BIOL, V19, P3246
[3]   THE RETINOBLASTOMA PROTEIN IS PHOSPHORYLATED DURING SPECIFIC PHASES OF THE CELL-CYCLE [J].
BUCHKOVICH, K ;
DUFFY, LA ;
HARLOW, E .
CELL, 1989, 58 (06) :1097-1105
[4]   THE E2F TRANSCRIPTION FACTOR IS A CELLULAR TARGET FOR THE RB PROTEIN [J].
CHELLAPPAN, SP ;
HIEBERT, S ;
MUDRYJ, M ;
HOROWITZ, JM ;
NEVINS, JR .
CELL, 1991, 65 (06) :1053-1061
[5]   PHOSPHORYLATION OF THE RETINOBLASTOMA GENE-PRODUCT IS MODULATED DURING THE CELL-CYCLE AND CELLULAR-DIFFERENTIATION [J].
CHEN, PL ;
SCULLY, P ;
SHEW, JY ;
WANG, JYJ ;
LEE, WH .
CELL, 1989, 58 (06) :1193-1198
[6]   pRB phosphorylation mutants reveal role of pRB in regulating S phase completion by a mechanism independent of E2F [J].
Chew, YP ;
Ellis, M ;
Wilkie, S ;
Mittnacht, S .
ONCOGENE, 1998, 17 (17) :2177-2186
[7]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[8]   TRANSCRIPTIONAL INHIBITION BY THE RETINOBLASTOMA PROTEIN [J].
FATTAEY, A ;
HELIN, K ;
HARLOW, E .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1993, 340 (1293) :333-336
[9]   E2F-1-MEDIATED TRANSACTIVATION IS INHIBITED BY COMPLEX-FORMATION WITH THE RETINOBLASTOMA SUSCEPTIBILITY GENE-PRODUCT [J].
FLEMINGTON, EK ;
SPECK, SH ;
KAELIN, WG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (15) :6914-6918
[10]   Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1 [J].
Harbour, JW ;
Luo, RX ;
Santi, AD ;
Postigo, AA ;
Dean, DC .
CELL, 1999, 98 (06) :859-869