Coexistence states for periodic competitive Kolmogorov systems

被引:25
作者
Battauz, A [1 ]
Zanolin, F [1 ]
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
关键词
D O I
10.1006/jmaa.1997.5726
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of positive periodic solutions for a class of nonautonomous competitive periodic Kolmogorov systems which generalize the May-Leonard model. A necessary and sufficient condition is also obtained. (C) 1998 Academic Press.
引用
收藏
页码:179 / 199
页数:21
相关论文
共 40 条
[2]   AN APPLICATION OF TOPOLOGICAL-DEGREE TO THE PERIODIC COMPETING SPECIES PROBLEM [J].
ALVAREZ, C ;
LAZER, AC .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 :202-219
[3]  
[Anonymous], 1996, REND SEM MAT U POLIT
[4]  
BATTAUZ A, 1996, THESIS U UDINE
[5]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[6]   PERSISTENCE IN DYNAMIC-SYSTEMS [J].
BUTLER, G ;
WALTMAN, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 63 (02) :255-263
[7]   PERIODIC-SOLUTIONS OF A PREDATOR-PREY SYSTEM WITH PERIODIC COEFFICIENTS [J].
BUTLER, GJ ;
FREEDMAN, HI .
MATHEMATICAL BIOSCIENCES, 1981, 55 (1-2) :27-38
[8]   Homeomorphisms of the disk with trivial dynamics and extinction of competitive systems [J].
Campos, J ;
Ortega, R ;
Tineo, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 138 (01) :157-170
[9]   CONTINUATION THEOREMS FOR PERIODIC PERTURBATIONS OF AUTONOMOUS SYSTEMS [J].
CAPIETTO, A ;
MAWHIN, J ;
ZANOLIN, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (01) :41-72
[10]   PERIODIC KOLMOGOROV SYSTEMS [J].
CUSHING, JM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (05) :811-827