Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii

被引:179
作者
Mittova, V
Volokita, M
Guy, M
Tal, M
机构
[1] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, IL-84990 Sede Boqer, Israel
[2] Ben Gurion Univ Negev, Dept Life Sci, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1034/j.1399-3054.2000.110106.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The activities of the ascorbate-glutathione cycle enzymes ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) and SOD were studied in cell organelles of the cultivated tomato Lycopersicon esculentum (M82) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa). All four enzymes of the ascorbate-glutathione cycle were present in chloroplasts/plastids, mitochondria and peroxisomes of leaf and root cells of both tomato species. In all leaf and root organelles of both species, the activity of MDHAR was similar to, or higher than, that of APX, while the activity of DHAR was one order of magnitude Lower than that of MDHAR. Based on these results, it is suggested that in the organelles of both tomato species, ascorbate is regenerated mainly by MDHAR. In both tomato species, GR activity, and to a lesser extent DHAR activity, was found to reside in the soluble fraction of all leaf and root cell organelles, while APX and MDHAR activities were distributed between the membrane and soluble fractions. A higher SOD to APX activity ratio in all Lpa organelles was the major difference between the two tomato species. It is possible that this higher ratio contributes to the inherently better protection of Lpa from salt stress, as was previously reported.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 49 条
[1]  
Alscher RG, 1997, PHYSIOL PLANTARUM, V100, P224, DOI 10.1034/j.1399-3054.1997.1000203.x
[2]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[3]   ASCORBATE FREE-RADICAL REDUCTASE, A KEY ENZYME OF THE ASCORBIC-ACID SYSTEM [J].
ARRIGONI, O ;
DIPIERRO, S ;
BORRACCINO, G .
FEBS LETTERS, 1981, 125 (02) :242-244
[4]  
Asada K., 1994, Causes of photooxidative stress and amelioration of defense systems in plants., P77
[5]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[6]   ASCORBATE PEROXIDASE - A HYDROGEN PEROXIDE-SCAVENGING ENZYME IN PLANTS [J].
ASADA, K .
PHYSIOLOGIA PLANTARUM, 1992, 85 (02) :235-241
[7]  
Asada K, 1997, OXIDATIVE STRESS MOL, P715, DOI DOI 10.1101/087969502.34.715
[8]  
BARTLETT SG, 1982, METHODS CHLOROPLAST, V86, P1081
[9]   NADH-monodehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membranes [J].
Bérczi, A ;
Moller, IM .
PLANT PHYSIOLOGY, 1998, 116 (03) :1029-1036
[10]   ASSAYING FOR SUPEROXIDE-DISMUTASE ACTIVITY - SOME LARGE CONSEQUENCES OF MINOR CHANGES IN CONDITIONS [J].
BEYER, WF ;
FRIDOVICH, I .
ANALYTICAL BIOCHEMISTRY, 1987, 161 (02) :559-566