Infinite horizon predictive control of constrained continuous-time linear systems

被引:23
作者
Cannon, M [1 ]
Kouvaritakis, B [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
predictive control; constraints; continuous-time systems;
D O I
10.1016/S0005-1098(00)00006-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers receding horizon control strategies for constrained linear systems. Continuous-time predictions of input-output responses on an infinite horizon allow exploitation of the full range of plant behaviour. In addition, an infinite prediction horizon ensures the nominal stability of the receding horizon control law. The problem of optimizing predictions subject to constraints is made tractable through the use of a finite-dimensional prediction class and by minimizing prediction costs at discrete instants. Necessary and sufficient conditions on the prediction class are derived using input-output stability theory, and the controller structure further refined on the basis of a criterion for ensuring feasibility in a receding horizon sense. Constrained optimization is performed using quadratic programming. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:943 / 955
页数:13
相关论文
共 15 条
[1]   Fast suboptimal predictive control with guaranteed stability [J].
Cannon, M ;
Kouvaritakis, B .
SYSTEMS & CONTROL LETTERS, 1998, 35 (01) :19-29
[2]   GENERALIZED PREDICTIVE CONTROL .1. THE BASIC ALGORITHM [J].
CLARKE, DW ;
MOHTADI, C ;
TUFFS, PS .
AUTOMATICA, 1987, 23 (02) :137-148
[3]   CONTINUOUS-TIME GENERALIZED PREDICTIVE CONTROL (CGPC) [J].
DEMIRCIOGLU, H ;
GAWTHROP, PJ .
AUTOMATICA, 1991, 27 (01) :55-74
[4]  
DEMIRCIOGLU H, 1992, P IEE D, V39, P371
[5]   LINEAR-SYSTEMS WITH STATE AND CONTROL CONSTRAINTS - THE THEORY AND APPLICATION OF MAXIMAL OUTPUT ADMISSIBLE-SETS [J].
GILBERT, EG ;
TAN, KT .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (09) :1008-1020
[6]  
GOODWIN GC, 1990, DIGITAL CONTROL ESTI
[7]  
Huang Y. F., 1982, AUTOMATICA, V18
[8]   APPROXIMATION WITH SUMS OF EXPONENTIALS IN LP[0,INFINITY) [J].
KAMMLER, DW .
JOURNAL OF APPROXIMATION THEORY, 1976, 16 (04) :384-408
[9]   OPTIMAL INFINITE-HORIZON FEEDBACK LAWS FOR A GENERAL-CLASS OF CONSTRAINED DISCRETE-TIME-SYSTEMS - STABILITY AND MOVING-HORIZON APPROXIMATIONS [J].
KEERTHI, SS ;
GILBERT, EG .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 57 (02) :265-293
[10]   MODIFIED QUADRATIC COST PROBLEM AND FEEDBACK STABILIZATION OF A LINEAR-SYSTEM [J].
KWON, WH ;
PEARSON, AE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (05) :838-842