Perturbation theory based equation of state for polar molecular fluids: I. Pure fluids

被引:73
作者
Churakov, SV [1 ]
Gottschalk, M [1 ]
机构
[1] Geoforschungszentrum Potsdam, D-14473 Potsdam, Germany
关键词
D O I
10.1016/S0016-7037(02)01347-9
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Based on the thermodynamic perturbation theory an equation of state (EOS) for molecular fluids has been formulated which can be used for many fluid species in geological systems. The EOS takes into account four substance specific parameters. These are the molecular dipole moment, the molar polarizability and the two parameters of the Lennard-Jones potential. For many fluids these parameters can be evaluated directly or indirectly from experimental measurements. In the absence of direct experimental determinations, as a first approximation, for a pure fluid the parameters of the Lennard-Jones potential can be evaluated using the critical temperature and the critical density if for polar molecules in addition the dipole moment is known with reasonable accuracy. The EOS with its model potential has the appropriate asymptotic behaviour at high pressures and temperatures and can be used to calculate both vapor-liquid equilibria and thermodynamic properties of single phase fluids up to at least 10 GPa and 2000 K. Currently, parameters for 98 inorganic and organic compounds are available. In this article the EOS for pure fluids is presented. In a further communication the EOS is extended to fluid mixtures (Churakov and Gottschalk, 2003). Copyright (C) 2003 Elsevier Science Ltd.
引用
收藏
页码:2397 / 2414
页数:18
相关论文
共 78 条
[1]  
AMBROSE D, 1993, CRC HDB CHEM PHYSICS
[2]   PHASE-EQUILIBRIA AND VOLUMETRIC PROPERTIES OF THE SYSTEMS KCL-H(2)0 AND NACL-KCL-H2O ABOVE 573-K - EQUATION OF STATE REPRESENTATION [J].
ANDERKO, A ;
PITZER, KS .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1993, 57 (20) :4885-4897
[3]   EQUATION-OF-STATE REPRESENTATION OF PHASE-EQUILIBRIA AND VOLUMETRIC PROPERTIES OF THE SYSTEM NACL-H2O ABOVE 573-K [J].
ANDERKO, A ;
PITZER, KS .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1993, 57 (08) :1657-1680
[4]   ROLES OF REPULSIVE AND ATTRACTIVE FORCES IN LIQUIDS - OPTIMIZED RANDOM PHASE APPROXIMATION [J].
ANDERSEN, HC ;
CHANDLER, D ;
WEEKS, JD .
JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (08) :3812-+
[5]  
ANGUS S, 1985, INT THERMODYNAMIC TA, V8
[6]  
Aranovich LY, 1999, AM MINERAL, V84, P1319
[7]   A MOLECULAR-DYNAMICS STUDY OF THE PRESSURE-VOLUME-TEMPERATURE PROPERTIES OF SUPERCRITICAL FLUIDS .1. H2O [J].
BELONOSHKO, A ;
SAXENA, SK .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1991, 55 (01) :381-387
[8]   A MOLECULAR-DYNAMICS STUDY OF THE PRESSURE-VOLUME-TEMPERATURE PROPERTIES OF SUPERCRITICAL FLUIDS .2. CO2, CH4, CO, O2, AND H-2 [J].
BELONOSHKO, A ;
SAXENA, SK .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1991, 55 (11) :3191-3208
[9]   A UNIFIED EQUATION OF STATE FOR FLUIDS OF C-H-O-N-S-AR COMPOSITION AND THEIR MIXTURES UP TO VERY HIGH-TEMPERATURES AND PRESSURES [J].
BELONOSHKO, AB ;
SAXENA, SK .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1992, 56 (10) :3611-3626
[10]   Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes [J].
Bose, K ;
Ganguly, J .
EARTH AND PLANETARY SCIENCE LETTERS, 1995, 136 (3-4) :109-121