Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers

被引:62
作者
Indjin, D [1 ]
Harrison, P [1 ]
Kelsall, RW [1 ]
Ikonic, Z [1 ]
机构
[1] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
关键词
D O I
10.1063/1.1558220
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electron transport in a terahertz GaAs/AlGaAs quantum-cascade laser is calculated using a fully self-consistent intersubband scattering model. Subband populations, carrier transition rates, and current densities are calculated and all relevant intra- and interperiod electron-electron and electron-LO-phonon scattering mechanisms are included. Employing an energy balance equation that includes the influence of both electron-LO-phonon and electron-electron scattering, the method also enables evaluation of the average electron temperature of the nonequilibrium carrier distributions in the device. In particular, the influence of the lattice temperature on the degradation of population inversion and device performance is investigated. The threshold currents, electric-field-current-density characteristics, and temperature-dependent performance are in good qualitative and quantitative agreement with measurement in a recent experimental realization [Kohler , Nature (London) 417, 156 (2002)]. Calculations indicate that an important mechanism limiting its operating temperature is the increase of leakage current from the injector to low levels in the active region, and this feature should be improved in future designs. (C) 2003 American Institute of Physics.
引用
收藏
页码:1347 / 1349
页数:3
相关论文
共 22 条
[1]   Terahertz intersubband emission in strong magnetic fields [J].
Blaser, S ;
Rochat, M ;
Beck, M ;
Hofstetter, D ;
Faist, J .
APPLIED PHYSICS LETTERS, 2002, 81 (01) :67-69
[2]   Terahertz electroluminescence from superlattice quantum cascade structures [J].
Colombelli, R ;
Straub, A ;
Capasso, F ;
Gmachl, C ;
Blakey, MI ;
Sergent, AM ;
Chu, SNG ;
West, KW ;
Pfeiffer, LN .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (06) :3526-3529
[3]   Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths [J].
Colombelli, R ;
Capasso, F ;
Gmachl, C ;
Hutchinson, AL ;
Sivco, DL ;
Tredicucci, A ;
Wanke, MC ;
Sergent, AM ;
Cho, AY .
APPLIED PHYSICS LETTERS, 2001, 78 (18) :2620-2622
[4]   Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation [J].
Faist, J ;
Hofstetter, D ;
Beck, M ;
Aellen, T ;
Rochat, M ;
Blaser, S .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :533-546
[5]   QUANTUM CASCADE LASER [J].
FAIST, J ;
CAPASSO, F ;
SIVCO, DL ;
SIRTORI, C ;
HUTCHINSON, AL ;
CHO, AY .
SCIENCE, 1994, 264 (5158) :553-556
[6]   Ultra-broadband semiconductor laser [J].
Gmachl, C ;
Sivco, DL ;
Colombelli, R ;
Capasso, F ;
Cho, AY .
NATURE, 2002, 415 (6874) :883-887
[7]   The nature of the electron distribution functions in quantum cascade lasers [J].
Harrison, P .
APPLIED PHYSICS LETTERS, 1999, 75 (18) :2800-2802
[8]   Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers [J].
Harrison, P ;
Indjin, D ;
Kelsall, RW .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (11) :6921-6923
[9]   Population-inversion and gain estimates for a semiconductor TASER [J].
Harrison, P ;
Soref, RA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2001, 37 (01) :153-158
[10]  
Harrison P., 1999, QUANTUM WELLS WIRES