On linear transformations of stress tensors for the description of plastic anisotropy

被引:187
作者
Barlat, Frederic
Yoon, Jeong Whan
Cazacu, Oana
机构
[1] Alcoa Tech Ctr, Alloy Technol & Mat Res Div, Alcoa Ctr, PA 15069 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Res Engn & Educ Facil, Shalimar, FL 32579 USA
关键词
analytic function; anisotropic material; constitutive behavior; yield condition;
D O I
10.1016/j.ijplas.2006.10.001
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The derivation of anisotropic yield functions based on the approach of linear transformations of a stress tensor is investigated for general and plane stress states. The number of coefficients available for the description of plastic anisotropy is discussed. A few specific yield functions are given to illustrate the concept. Among these examples, a plane stress formulation is described in more detail, namely, Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Dick, R.E., Choi, S.H., Chung, K., Lege, D.J., 2000. Constitutive modeling for aluminum sheet forming simulations. In: Khan, A.S, Zhang, H., Yuan, Y. (Eds.), Plastic and Viscoplastic Response of Materials and Metal Forming, Proceedings of the 8th International Symposium on Plasticity and its Current Applications, Whistler, Canada, July 2000. Neat Press, Fulton, MD, pp. 591-593; Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.-H., Chu, E., 2003. Plane stress yield function for aluminum alloy sheets - Part 1: theory. Int. J. Plasticity 19, 1297-1319; Yoon, J.W., Barlat, F., Dick, R.E., 2000. Sheet metal forming simulation for aluminum alloy sheets. In: Sheet Metal Forming Simulation: Sing-Tang 65th Anniversary Volume, SAE paper 2000-01-0774, Society of Automotive Engineer, SAE, pp. 67-72]. It is shown that other recently published anisotropic yield functions are, in fact, Y1d2000-2d presented in different forms. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:876 / 896
页数:21
相关论文
共 47 条
[1]  
[Anonymous], 2006, ASM HDB B
[3]   A non-quadratic plane stress yield function for orthotropic sheet metals [J].
Aretz, H .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 168 (01) :1-9
[4]   An improved analytical description of orthotropy in metallic sheets [J].
Banabic, D ;
Aretz, H ;
Comsa, DS ;
Paraianu, L .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (03) :493-512
[5]   Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions [J].
Banabic, D ;
Kuwabara, T ;
Balan, T ;
Comsa, DS ;
Julean, D .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2003, 45 (05) :797-811
[6]   A 6-COMPONENT YIELD FUNCTION FOR ANISOTROPIC MATERIALS [J].
BARLAT, F ;
LEGE, DJ ;
BREM, JC .
INTERNATIONAL JOURNAL OF PLASTICITY, 1991, 7 (07) :693-712
[7]   Plane stress yield function for aluminum alloy sheets - part 1: theory [J].
Barlat, F ;
Brem, JC ;
Yoon, JW ;
Chung, K ;
Dick, RE ;
Lege, DJ ;
Pourgoghrat, F ;
Choi, SH ;
Chu, E .
INTERNATIONAL JOURNAL OF PLASTICITY, 2003, 19 (09) :1297-1319
[8]   PLASTIC BEHAVIOR AND STRETCHABILITY OF SHEET METALS .1. A YIELD FUNCTION FOR ORTHOTROPIC SHEETS UNDER PLANE-STRESS CONDITIONS [J].
BARLAT, F ;
LIAN, J .
INTERNATIONAL JOURNAL OF PLASTICITY, 1989, 5 (01) :51-66
[9]   Linear transfomation-based anisotropic yield functions [J].
Barlat, F ;
Aretz, H ;
Yoon, JW ;
Karabin, ME ;
Brem, JC ;
Dick, RE .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (05) :1009-1039
[10]  
BARLAT F, 2000, PLAST VISC REP MAT M, P591