Compact representation of multidimensional data using tensor rank-one decomposition

被引:47
作者
Wang, HC [1 ]
Ahuja, N [1 ]
机构
[1] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
来源
PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1 | 2004年
关键词
D O I
10.1109/ICPR.2004.1334001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach for representing multidimensional data by a compact number of bases. We consider the multidimensional data as tensors instead of matrices or vectors, and propose a Tensor Rank-One Decomposition (TROD) algorithm by decomposing Nth-order data into a collection of rank-l tensors based on multilinear algebra. By applying this algorithm to image sequence compression, we obtain much higher quality images with the same compression ratio as Principle Component Analysis (PCA). Experiments with gray-level and color video sequences are used to illustrate the validity of this approach.
引用
收藏
页码:44 / 47
页数:4
相关论文
共 16 条
[1]  
ALEXA M, 2000, EUROGRAPHICS 2000, V19
[2]   Unsupervised Learning [J].
Barlow, H. B. .
NEURAL COMPUTATION, 1989, 1 (03) :295-311
[3]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[4]  
COMON P, 2000, IMA C MATH SIGN PROC, P18
[5]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[6]   BLIND SEPARATION OF SOURCES .1. AN ADAPTIVE ALGORITHM BASED ON NEUROMIMETIC ARCHITECTURE [J].
JUTTEN, C ;
HERAULT, J .
SIGNAL PROCESSING, 1991, 24 (01) :1-10
[7]   On the best rank-1 approximation of higher-order supersymmetric tensors [J].
Kofidis, E ;
Regalia, PA .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 23 (03) :863-884
[8]  
LATHAUWER LD, 2000, SIAM J MATRIX ANAL A, V21, P1253, DOI DOI 10.1137/S0895479896305696
[9]  
MUTI D, 2003, ICASSP
[10]   Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J].
Olshausen, BA ;
Field, DJ .
NATURE, 1996, 381 (6583) :607-609