In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing Delta F508-CFTR

被引:317
作者
Rubenstein, RC [1 ]
Egan, ME [1 ]
Zeitlin, PL [1 ]
机构
[1] YALE UNIV,SECT PEDIAT RESP MED,NEW HAVEN,CT 06520
关键词
cystic fibrosis; CFTR; phenylbutyrate; pharmacotherapy;
D O I
10.1172/JCI119788
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The most common cystic fibrosis transmembrane conductance regulator mutation, Delta F508-CFTR, is a partially functional chloride channel that is retained in the endoplasmic reticulum and degraded. We hypothesize that a known transcriptional regulator, sodium 4-phenylbutyrate (4PBA), will enable a greater fraction of Delta F508-CFTR to escape degradation and appear at the cell surface, Primary cultures of nasal polyp epithelia from CF patients (Delta F508 homozygous or heterozygous), or the CF bronchial epithelial cell line IB3-1 (Delta F508/W1282X) were exposed to 4PBA for up to 7 d in culture. 4PBA treatment at concentrations of 0.1 and 2 mM resulted in the restoration of forskolin-activated chloride secretion. Protein kinase A-activated, linear, 10 pS chloride channels appeared at the plasma membrane of IB3-1 cells at the tested concentration of 2.5 mM, Treatment of IB3-1 cells with 0.1-1 mM 4PBA and primary nasal epithelia with 5 mM 4PBA also resulted in the appearance of higher molecular mass forms of CFTR consistent with addition and modification of oligosaccharides in the Golgi apparatus, as detected by immunoblotting of whole cell lysates with anti-CFTR antisera, Immunocytochemistry in CF epithelial cells treated with 4PBA was consistent with increasing amounts of Delta F508-CFTR. These data indicate that 4PBA is a promising pharmacologic agent for inducing correction of the CF phenotype in CF patients carrying the Delta F508 mutation.
引用
收藏
页码:2457 / 2465
页数:9
相关论文
共 36 条
  • [1] BEAR CE, 1991, J BIOL CHEM, V266, P19142
  • [2] BEDWELL DM, 1996, NAT MED, V6, P608
  • [3] Brown CR, 1996, CELL STRESS CHAPERON, V1, P117, DOI 10.1379/1466-1268(1996)001<0117:CCCTMP>2.3.CO
  • [4] 2
  • [5] PHENYLACETYLGLUTAMINE MAY REPLACE UREA AS A VEHICLE FOR WASTE NITROGEN-EXCRETION
    BRUSILOW, SW
    [J]. PEDIATRIC RESEARCH, 1991, 29 (02) : 147 - 150
  • [6] Carducci MA, 1996, CLIN CANCER RES, V2, P379
  • [7] Reactivation of silenced, virally transduced genes by inhibitors of histone deacetylase
    Chen, WY
    Bailey, EC
    McCune, SL
    Dong, JY
    Townes, TM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) : 5798 - 5803
  • [8] DEFECTIVE INTRACELLULAR-TRANSPORT AND PROCESSING OF CFTR IS THE MOLECULAR-BASIS OF MOST CYSTIC-FIBROSIS
    CHENG, SH
    GREGORY, RJ
    MARSHALL, J
    PAUL, S
    SOUZA, DW
    WHITE, GA
    ORIORDAN, CR
    SMITH, AE
    [J]. CELL, 1990, 63 (04) : 827 - 834
  • [9] FUNCTIONAL ACTIVATION OF THE CYSTIC-FIBROSIS TRAFFICKING MUTANT DELTA-F508-CFTR BY OVEREXPRESSION
    CHENG, SH
    FANG, SL
    ZABNER, J
    MARSHALL, J
    PIRAINO, S
    SCHIAVI, SC
    JEFFERSON, DM
    WELSH, MJ
    SMITH, AE
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 1995, 268 (04) : L615 - L624
  • [10] ORAL SODIUM PHENYLBUTYRATE THERAPY IN HOMOZYGOUS BETA-THALASSEMIA - A CLINICAL-TRIAL
    COLLINS, AF
    PEARSON, HA
    GIARDINA, P
    MCDONAGH, KT
    BRUSILOW, SW
    DOVER, GJ
    [J]. BLOOD, 1995, 85 (01) : 43 - 49