Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas

被引:116
作者
Kukovecz, A
Kónya, Z
Nagaraju, N
Willems, I
Tamási, A
Fonseca, A
Nagy, JB
Kiricsi, I
机构
[1] Univ Szeged, Dept Appl & Environm Chem, H-6720 Szeged, Hungary
[2] Fac Univ Notre Dame Paix, Lab RMN, B-5000 Namur, Belgium
[3] St Josephs Coll, Dept Chem, Bangalore 560025, Karnataka, India
关键词
D O I
10.1039/b002331k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An attempt has been made to synthesise multiwalled carbon nanotubes using cobalt, iron and nickel supported on different types of silica-aluminas to investigate the rules governing their nanotube producing activity. Acetylene was used as the source of carbon. Decomposition of acetylene has been carried out at atmospheric pressure. The effect of reaction temperature in the 770-970 K range and the flow rate of the hydrocarbon has been investigated. The catalysts were analysed by XRD, UV-VIS, surface area and porosity measurements. Formation of carbon nanotubes was followed by electron microscopy. The amount of deposited carbon increased with increasing reaction temperature and the flow rate of acetylene, but decreased with increasing concentration of alumina in the catalyst support. Each catalyst showed high production of carbon nanotubes at 970 K; however, they were inactive at 770 K. The yield of tube formation was very low at 870 K. The high-resolution transmission electron microscopic (HREM) analysis showed that the outer diameter of the tubes generated varied from 8 to 40 nm, the tubes were multiwalled, and the number of the layers was between 8 and 30. Sol-gel derived samples were also found to be working catalysts, indicating the existence of an optimal metal particle size.
引用
收藏
页码:3071 / 3076
页数:6
相关论文
共 18 条
[1]   PREPARATION OF CARBON NANOTUBES BY ARC-DISCHARGE EVAPORATION [J].
ANDO, Y ;
IIJIMA, S .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1993, 32 (1A-B) :L107-L109
[2]   Purification of catalytically produced multi-wall nanotubes [J].
Colomer, JF ;
Piedigrosso, P ;
Willems, I ;
Journet, C ;
Bernier, C ;
Van Tendeloo, G ;
Fonseca, A ;
Nagy, JB .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1998, 94 (24) :3753-3758
[3]   Nanotubes as nanoprobes in scanning probe microscopy [J].
Dai, HJ ;
Hafner, JH ;
Rinzler, AG ;
Colbert, DT ;
Smalley, RE .
NATURE, 1996, 384 (6605) :147-150
[4]  
Dresselhaus M. S., 1996, SCI FULLERENES CARBO
[5]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[6]   Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions [J].
Flahaut, E ;
Govindaraj, A ;
Peigney, A ;
Laurent, C ;
Rousset, A ;
Rao, CNR .
CHEMICAL PHYSICS LETTERS, 1999, 300 (1-2) :236-242
[7]   CATALYTIC GROWTH OF SINGLE-WALLED NANOTUBES BY LASER VAPORIZATION [J].
GUO, T ;
NIKOLAEV, P ;
THESS, A ;
COLBERT, DT ;
SMALLEY, RE .
CHEMICAL PHYSICS LETTERS, 1995, 243 (1-2) :49-54
[8]   SINGLE-SHELL CARBON NANOTUBES OF 1-NM DIAMETER [J].
IIJIMA, S ;
ICHIHASHI, T .
NATURE, 1993, 363 (6430) :603-605
[9]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[10]   THE STUDY OF CARBON NANOTUBULES PRODUCED BY CATALYTIC METHOD [J].
IVANOV, V ;
NAGY, JB ;
LAMBIN, P ;
LUCAS, A ;
ZHANG, XB ;
ZHANG, XF ;
BERNAERTS, D ;
VANTENDELOO, G ;
AMELINCKX, S ;
VANLANDUYT, J .
CHEMICAL PHYSICS LETTERS, 1994, 223 (04) :329-335