Background: Anti-soluble liver antigen (SLA) autoantibodies are specific for autoimmune hepatitis type 1 and are the only immunologic marker found in 15-20% of hepatitis cases previously considered cryptogenic. Anti-SLA antibodies react with the 100 000g supernatant from rat liver homogenate, but the molecular targets remain controversial. Methods: We characterized anti-SLA targets by one- and two-dimensional immunoblotting analysis. The recognized proteins were identified by peptide mass fingerprint analysis after matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Results: Three proteins of 35 kDa and pI 6.0,50 kDa and pl between 6.0 and 6.5, and 58 kDa and pl between 6.5 and 7.0 were stained more intensely by anti-SLA positive-sera than by control sera. After in-gel tryptic digestion, MALDI-TOF analysis of the generated peptides enabled the clear identification of N-hydroxyarylamine sulfotransferase, isoforms of alpha-enolase, and isoforms of catalase. Conclusions: Possible antigens for anti-SLA antibodies include a sulfotransferase, alpha-enolase(s), and catalase(s). Two-dimensional electrophoresis combined with mass spectrometry offers a versatile tool to identify molecular targets of autoantibodies and thus to improve diagnostic tools and the understanding of the immune process. (C) 2003 American Association for Clinical Chemistry.