Tau aggregation is driven by a transition from random coil to beta sheet structure

被引:298
作者
von Bergen, M [1 ]
Barghorn, S [1 ]
Biernat, J [1 ]
Mandelkow, EM [1 ]
Mandelkow, E [1 ]
机构
[1] Max Planck Struct Mol Biol, D-22607 Hamburg, Germany
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 2005年 / 1739卷 / 2-3期
关键词
Alzheimer's disease; tau; paired helical filament; FTDP-17; cross beta structure;
D O I
10.1016/j.bbadis.2004.09.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The abnormal aggregation of the microtubule associated protein tau into paired helical filaments (PHFs) is one the hallmarks of Alzheimer's disease. The soluble protein is one of the longest natively unfolded proteins, lacking significant amounts of secondary structure over a sequence of 441 amino acids in the longest isoform. Furthermore, the unfolded character is consistent with some notable features of the protein like stability towards heat and acid treatment. It is still unclear how these characteristics support the physiological function of binding to and stabilization of microtubules. We review here some recent studies on how an unfolded protein such as tau can adopt beta-structure, which then leads to the highly ordered morphology of the PHFs. The core sequence for both microtubule binding and PHF formation is the microtubule binding domain containing three or four repeats. This region alone is sufficient for PHF formation and mostly unfolded in the soluble state. A search for sequence motifs within this region crucial for PHF building revealed two hexapeptides in the second and the third repeat. Some of the genetically linked cases of FTDP-17 show missense mutations in or adjacent to these hexapeptide motifs. Proteins containing the P301L and the DeltaK280 mutations exhibit accelerated aggregation. The importance of the two hexapeptides stems from their capacity to undergo a conformational change from a random coil to a beta sheet structure. The increase of beta sheet structure is a typical feature of an amyloidogenic protein and is the basis of other characteristics like a decreased sensitivity towards proteolytic degradation and Congo red binding. PHFs aggregated in vitro and in vivo contain beta-sheet structure, as judged by circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction. (C) 2004 Elsevier B.V All rights reserved.
引用
收藏
页码:158 / 166
页数:9
相关论文
共 67 条
[1]   Nonsaturable binding indicates clustering of Tau on the microtubule surface in a paired helical filament-like conformation [J].
Ackmann, M ;
Wiech, H ;
Mandelkow, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (39) :30335-30343
[2]   Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments [J].
Alonso, AD ;
Zaidi, T ;
Novak, M ;
Grundke-Iqbal, I ;
Iqbal, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6923-6928
[3]   Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias [J].
Barghorn, S ;
Zheng-Fischhöfer, Q ;
Ackmann, M ;
Biernat, J ;
von Bergen, M ;
Mandelkow, EM ;
Mandelkow, E .
BIOCHEMISTRY, 2000, 39 (38) :11714-11721
[4]   Tau paired helical filaments from Alzheimer's disease brain and assembled in vitro are based on β-structure in the core domain [J].
Barghorn, S ;
Davies, P ;
Mandelkow, E .
BIOCHEMISTRY, 2004, 43 (06) :1694-1703
[5]   Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments [J].
Barghorn, S ;
Mandelkow, E .
BIOCHEMISTRY, 2002, 41 (50) :14885-14896
[6]   Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-β structure [J].
Berriman, J ;
Serpell, LC ;
Oberg, KA ;
Fink, AL ;
Goedert, M ;
Crowther, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (15) :9034-9038
[7]   Inhibition of tau polymerization by its carboxy-terminal caspase cleavage fragment [J].
Berry, RW ;
Abraha, A ;
Lagalwar, S ;
LaPointe, N ;
Gamblin, TC ;
Cryns, VL ;
Binder, LI .
BIOCHEMISTRY, 2003, 42 (27) :8325-8331
[8]   THE SWITCH OF TAU-PROTEIN TO AN ALZHEIMER-LIKE STATE INCLUDES THE PHOSPHORYLATION OF 2 SERINE PROLINE MOTIFS UPSTREAM OF THE MICROTUBULE BINDING REGION [J].
BIERNAT, J ;
MANDELKOW, EM ;
SCHROTER, C ;
LICHTENBERGKRAAG, B ;
STEINER, B ;
BERLING, B ;
MEYER, H ;
MERCKEN, M ;
VANDERMEEREN, A ;
GOEDERT, M ;
MANDELKOW, E .
EMBO JOURNAL, 1992, 11 (04) :1593-1597
[9]   PHOSPHORYLATION OF SER(262) STRONGLY REDUCES BINDING OF TAU-PROTEIN TO MICROTUBULES - DISTINCTION BETWEEN PHF-LIKE IMMUNOREACTIVITY AND MICROTUBULE-BINDING [J].
BIERNAT, J ;
GUSTKE, N ;
DREWES, G ;
MANDELKOW, EM ;
MANDELKOW, E .
NEURON, 1993, 11 (01) :153-163
[10]  
Buee Luc, 2002, Journal de la Societe de Biologie, V196, P103