Renormalization group in quantum mechanics

被引:5
作者
Gosselin, P
Mohrbach, H
机构
[1] Univ Grenoble 1, Inst Fourier, CNRS, UMR 5582,UFR Math, F-38402 St Martin Dheres, France
[2] LPLI, Inst Phys, F-57070 Metz, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 36期
关键词
D O I
10.1088/0305-4470/33/36/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish the renormalization group (RG) equation for the running action in the context of a one-quantum-particle system. This equation is deduced by integrating one Fourier mode after another in the path integral formalism. It is free from the well known pathologies which appear in quantum field theory due to the sharp cutoff. We show that for an arbitrary background path the usual local form of the action is not preserved by the flow. To cure: this problem we consider a more general action than usual, which is stable in the RG flow. This allows us to obtain a new consistent RG equation for the action.
引用
收藏
页码:6343 / 6355
页数:13
相关论文
共 12 条
[1]   SCHEME INDEPENDENCE AND THE EXACT RENORMALIZATION-GROUP [J].
BALL, RD ;
HAAGENSEN, PE ;
LATORRE, JI ;
MORENO, E .
PHYSICS LETTERS B, 1995, 347 (1-2) :80-88
[2]   Two loop results from the derivative expansion of the blocked action [J].
Bonanno, A ;
Zappala, D .
PHYSICAL REVIEW D, 1998, 57 (12) :7383-7387
[3]   Wegner-Houghton equation and derivative expansion -: art. no. 065009 [J].
Bonanno, A ;
Branchina, V ;
Mohrbach, H ;
Zappalà, D .
PHYSICAL REVIEW D, 1999, 60 (06)
[4]  
BRANCHINA V, 1999, HEPTH9912141
[5]   Renormalization group at finite temperature in quantum mechanics [J].
Gosselin, P ;
Grosdidier, B ;
Mohrbach, H .
PHYSICS LETTERS A, 1999, 256 (2-3) :125-131
[6]  
Kleinert H., 1995, PATH INTEGRALS QUANT
[7]   Momentum scale expansion of sharp cutoff flow equations [J].
Morris, TR .
NUCLEAR PHYSICS B, 1996, 458 (03) :477-503
[8]   RECURSION RELATIONS AND FIXED-POINTS FOR FERROMAGNETS WITH LONG-RANGE INTERACTIONS [J].
SAK, J .
PHYSICAL REVIEW B, 1973, 8 (01) :281-285
[9]   RENORMALIZATION GROUP EQUATION FOR CRITICAL PHENOMENA [J].
WEGNER, FJ ;
HOUGHTON, A .
PHYSICAL REVIEW A, 1973, 8 (01) :401-412
[10]   THE AVERAGE ACTION FOR SCALAR FIELDS NEAR PHASE-TRANSITIONS [J].
WETTERICH, C .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 57 (03) :451-469