A level set formulation for Willmore flow

被引:83
作者
Droske, M [1 ]
Rumpf, M [1 ]
机构
[1] Univ Duisburg Gesamthsch, Numer Anal & Sci Comp, D-47057 Duisburg, Germany
关键词
D O I
10.4171/IFB/105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A level set formulation of Willmore flow is derived using the gradient flow perspective. Starting from single embedded surfaces and the corresponding gradient flow, the metric is generalized to sets of level set surfaces using the identification of normal velocities and variations of the level set function in time via the level set equation. This approach in particular allows one to identify the natural dependent quantities of the derived variational formulation. Furthermore, spatial and temporal discretizations are discussed and some numerical simulations are presented.
引用
收藏
页码:361 / 378
页数:18
相关论文
共 35 条
[1]  
Ambrosio L, 2003, INTERFACE FREE BOUND, V5, P63
[2]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[3]  
[Anonymous], 1984, GALERKIN FINITE ELEM
[4]  
Bänsch E, 2004, INT S NUM M, V147, P53
[5]   An adaptive uzawa FEM for the stokes problem:: Convergence without the inf-sup condition [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1207-1229
[6]  
Barrett R., 1994, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, V2nd ed.
[7]   Image inpainting [J].
Bertalmio, M ;
Sapiro, G ;
Caselles, V ;
Ballester, C .
SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, :417-424
[8]  
Bertalmio M., 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, V1, pI, DOI DOI 10.1109/CVPR.2001.990497
[9]  
Chan TF, 2003, SIAM J APPL MATH, V63, P564
[10]  
Ciarlet P.G., 2000, MATH ELASTICITY, V3