Bacterial response regulators: versatile regulatory strategies from common domains

被引:248
作者
Gao, Rong
Mack, Timothy R.
Stock, Ann M. [1 ]
机构
[1] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Ctr Adv Biotechnol & Med, Howard Hughes Med Inst, Piscataway, NJ 08854 USA
[2] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA
关键词
D O I
10.1016/j.tibs.2007.03.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Response regulators (RRs) comprise a major family of signaling proteins in prokaryotes. A modular architecture that consists of a conserved receiver domain and a variable effector domain enables RRs to function as phosphorylation-regulated switches that couple a wide variety of cellular behaviors to environmental cues. Recently, advances have been made in understanding RR functions both at genome-wide and molecular levels. Global techniques have been developed to analyze RR input and output, expanding the scope of characterization of these versatile components. Meanwhile, structural studies have revealed that, despite common structures and mechanisms of function within individual domains, a range of interactions between receiver and effector domains confer great diversity in regulatory strategies, optimizing individual RRs for the specific regulatory needs of different signaling systems.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 70 条
[1]   The evolution of two-component systems in bacteria reveals different strategies for niche adaptation [J].
Alm, Eric ;
Huang, Katherine ;
Arkin, Adam .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (11) :1329-1342
[2]   C-terminal DNA binding stimulates N-terminal phosphorylation of the outer membrane protein regulator OmpR from Escherichia coli [J].
Ames, SK ;
Frankema, N ;
Kenney, LJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (21) :11792-11797
[3]   Activation of methylesterase CheB: Evidence of a dual role for the regulatory domain [J].
Anand, GS ;
Goudreau, PN ;
Stock, AM .
BIOCHEMISTRY, 1998, 37 (40) :14038-14047
[4]  
[Anonymous], 2003, HISTIDINE KINASES SI, DOI DOI 10.1016/B978-0-12-372484-7.X5000-0
[5]   Cyanobacterial two-component proteins: Structure, diversity, distribution, and evolution [J].
Ashby, Mark K. ;
Houmard, Jean .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2006, 70 (02) :472-+
[6]   Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states [J].
Bachhawat, P ;
Swapna, GVT ;
Montelione, GT ;
Stock, AM .
STRUCTURE, 2005, 13 (09) :1353-1363
[7]   Structure of the Escherichia coli response regulator NarL [J].
Baikalov, I ;
Schroder, I ;
KaczorGrzeskowiak, M ;
Grzeskowiak, K ;
Gunsalus, RP ;
Dickerson, RE .
BIOCHEMISTRY, 1996, 35 (34) :11053-11061
[8]   Regulation of bacterial virulence by two-component systems [J].
Beier, D ;
Gross, R .
CURRENT OPINION IN MICROBIOLOGY, 2006, 9 (02) :143-152
[9]   New technologies to assess genotype-phenotype relationships [J].
Bochner, BR .
NATURE REVIEWS GENETICS, 2003, 4 (04) :309-314
[10]   Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima [J].
Buckler, DR ;
Zhou, YC ;
Stock, AM .
STRUCTURE, 2002, 10 (02) :153-164