Immune system changes during simulated planetary exploration on Devon Island, high arctic

被引:16
作者
Crucian, Brian
Lee, Pascal
Stowe, Raymond
Jones, Jeff
Effenhauser, Rainer
Widen, Raymond
Sams, Clarence
机构
[1] NASA, Lyndon B Johnson Space Ctr, Wyle Labs, Houston, TX 77058 USA
[2] SETI Inst, Mars Inst, Mountain View, CA 94043 USA
[3] NASA, Ames Res Ctr, Mountain View, CA 94043 USA
[4] Microgen Labs, La Marque, TX 77568 USA
[5] Tampa Gen Hosp, Tampa, FL 33601 USA
关键词
D O I
10.1186/1471-2172-8-7
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Dysregulation of the immune system has been shown to occur during spaceflight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions have yet to be established. Also, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field- compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive immune assessment on field team members participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate the effect of mission-associated stressors on the human immune system. To perform the study, the development of techniques for processing immune samples in remote field locations was required. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, whole-blood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles, plasma cortisol and EBV viral antibody levels. Study timepoints were 30 days prior to mission start, mid-mission and 60 days after mission completion. Results: The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed on Devon Island, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in astronauts following spaceflight. Conclusion: The immune system changes described during the HMP field deployment validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology. The sample processing protocol developed for this study may have applications for immune studies in remote terrestrial field locations. Elements of this protocol could possibly be adapted for future in-flight immunology studies conducted during space missions.
引用
收藏
页数:13
相关论文
共 60 条
[1]  
BLACK PH, 1994, ANTIMICROB AGENTS CH, V38, P1
[2]   Microgravity and immune responsiveness: Implications for space travel [J].
Borchers, AT ;
Keen, CL ;
Gershwin, ME .
NUTRITION, 2002, 18 (10) :889-898
[3]  
Buravkova L B, 2004, J Gravit Physiol, V11, pP177
[4]   Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases [J].
Calcagni, Emanuele ;
Elenkov, Ilia .
BASIC AND CLINICAL ASPECTS OF NEUROENDOCRINE IMMUNOLOGY IN RHEUMATIC DISEASES, 2006, 1069 :62-76
[5]   PRODUCTION AND ACTION OF CYTOKINES IN-SPACE [J].
CHAPES, SK ;
MORRISON, DR ;
GUIKEMA, JA ;
LEWIS, ML ;
SPOONER, BS .
LIFE SCIENCES AND SPACE RESEARCH XXV (1): GRAVITATIONAL BIOLOGY, 1994, 14 (08) :5-9
[6]  
Cockell CS, 2001, PHOTOCHEM PHOTOBIOL, V74, P570, DOI 10.1562/0031-8655(2001)074<0570:EOAFST>2.0.CO
[7]  
2
[8]   MITOGENIC SIGNAL-TRANSDUCTION IN T-LYMPHOCYTES IN MICROGRAVITY [J].
COGOLI, A ;
BECHLER, B ;
COGOLIGREUTER, M ;
CRISWELL, SB ;
JOLLER, H ;
JOLLER, P ;
HUNZINGER, E ;
MULLER, O .
JOURNAL OF LEUKOCYTE BIOLOGY, 1993, 53 (05) :569-575
[9]  
Cogoli A, 1997, Gravit Space Biol Bull, V10, P5
[10]  
Crucian B E, 1999, J Gravit Physiol, V6, pP33