Geometrical error compensation of precision motion systems using radial basis function

被引:27
作者
Tan, KK [1 ]
Huang, SN [1 ]
Seet, HL [1 ]
机构
[1] Natl Univ Singapore, Dept Elect Engn, Singapore 117576, Singapore
关键词
geometrical error compensation; precision motion control; radial basis functions;
D O I
10.1109/19.872918
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a new method for geometrical error compensation of precision motion systems. The compensation is carried out with respect to an overall geometrical error model which is constructed from the individual error components associated with each axis of the machine. These error components are modeled using radial basis functions (RBFs), thus dispensing with the conventional look-up table. The adequacy and clear benefits of the proposed approach are illustrated from an application to an XY table.
引用
收藏
页码:984 / 991
页数:8
相关论文
共 16 条
  • [1] *BRIT STAND, 1989, COORD MEAS MACH 3
  • [2] BUSH K, 1984, P INT S METR QUAL CO, P270
  • [3] Duffie NA., 1987, CIRP, V36, P355, DOI DOI 10.1016/S0007-8506(07)62621-3
  • [4] Evans C. J., 1989, PRECISION ENG EVOLUT
  • [5] Dynamic structure neural networks for stable adaptive control of nonlinear systems
    Fabri, S
    Kadirkamanathan, V
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (05): : 1151 - 1167
  • [6] Hayati S. A., 1983, Proceedings of the 22nd IEEE Conference on Decision and Control, P1477
  • [7] HOCKEN R, 1980, REPORT TECHNOLOGY MA, V5
  • [8] Hocken R, 1977, CIRP Ann-Manuf Technol, V26, P403
  • [9] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [10] LOVE WJ, 1973, 14 MTDR, P307