GWAMA: software for genome-wide association meta-analysis

被引:413
作者
Magi, Reedik [1 ,2 ]
Morris, Andrew P. [1 ]
机构
[1] Univ Oxford, Wellcome Trust Ctr Human Genet, Genet & Genom Epidemiol Unit, Oxford OX3 7BN, England
[2] Univ Oxford, Churchill Hosp, Oxford Ctr Diabet Endocrinol & Metab, Oxford OX3 7LJ, England
来源
BMC BIOINFORMATICS | 2010年 / 11卷
基金
英国惠康基金;
关键词
HETEROGENEITY; IMPUTATION;
D O I
10.1186/1471-2105-11-288
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. Results: We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. Conclusions: The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.
引用
收藏
页数:6
相关论文
共 17 条
  • [1] [Anonymous], PLOS ONE
  • [2] [Anonymous], 2005, R LANG ENV STAT COMP
  • [3] Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering
    Browning, Sharon R.
    Browning, Brian L.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) : 1084 - 1097
  • [4] Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
    Burton, Paul R.
    Clayton, David G.
    Cardon, Lon R.
    Craddock, Nick
    Deloukas, Panos
    Duncanson, Audrey
    Kwiatkowski, Dominic P.
    McCarthy, Mark I.
    Ouwehand, Willem H.
    Samani, Nilesh J.
    Todd, John A.
    Donnelly, Peter
    Barrett, Jeffrey C.
    Davison, Dan
    Easton, Doug
    Evans, David
    Leung, Hin-Tak
    Marchini, Jonathan L.
    Morris, Andrew P.
    Spencer, Chris C. A.
    Tobin, Martin D.
    Attwood, Antony P.
    Boorman, James P.
    Cant, Barbara
    Everson, Ursula
    Hussey, Judith M.
    Jolley, Jennifer D.
    Knight, Alexandra S.
    Koch, Kerstin
    Meech, Elizabeth
    Nutland, Sarah
    Prowse, Christopher V.
    Stevens, Helen E.
    Taylor, Niall C.
    Walters, Graham R.
    Walker, Neil M.
    Watkins, Nicholas A.
    Winzer, Thilo
    Jones, Richard W.
    McArdle, Wendy L.
    Ring, Susan M.
    Strachan, David P.
    Pembrey, Marcus
    Breen, Gerome
    St Clair, David
    Caesar, Sian
    Gordon-Smith, Katherine
    Jones, Lisa
    Fraser, Christine
    Green, Elain K.
    [J]. NATURE, 2007, 447 (7145) : 661 - 678
  • [5] Practical aspects of imputation-driven meta-analysis of genome-wide association studies
    de Bakker, Paul I. W.
    Ferreira, Manuel A. R.
    Jia, Xiaoming
    Neale, Benjamin M.
    Raychaudhuri, Soumya
    Voight, Benjamin F.
    [J]. HUMAN MOLECULAR GENETICS, 2008, 17 : R122 - R128
  • [6] METAANALYSIS IN CLINICAL-TRIALS
    DERSIMONIAN, R
    LAIRD, N
    [J]. CONTROLLED CLINICAL TRIALS, 1986, 7 (03): : 177 - 188
  • [7] Genomic control for association studies
    Devlin, B
    Roeder, K
    [J]. BIOMETRICS, 1999, 55 (04) : 997 - 1004
  • [8] A second generation human haplotype map of over 3.1 million SNPs
    Frazer, Kelly A.
    Ballinger, Dennis G.
    Cox, David R.
    Hinds, David A.
    Stuve, Laura L.
    Gibbs, Richard A.
    Belmont, John W.
    Boudreau, Andrew
    Hardenbol, Paul
    Leal, Suzanne M.
    Pasternak, Shiran
    Wheeler, David A.
    Willis, Thomas D.
    Yu, Fuli
    Yang, Huanming
    Zeng, Changqing
    Gao, Yang
    Hu, Haoran
    Hu, Weitao
    Li, Chaohua
    Lin, Wei
    Liu, Siqi
    Pan, Hao
    Tang, Xiaoli
    Wang, Jian
    Wang, Wei
    Yu, Jun
    Zhang, Bo
    Zhang, Qingrun
    Zhao, Hongbin
    Zhao, Hui
    Zhou, Jun
    Gabriel, Stacey B.
    Barry, Rachel
    Blumenstiel, Brendan
    Camargo, Amy
    Defelice, Matthew
    Faggart, Maura
    Goyette, Mary
    Gupta, Supriya
    Moore, Jamie
    Nguyen, Huy
    Onofrio, Robert C.
    Parkin, Melissa
    Roy, Jessica
    Stahl, Erich
    Winchester, Ellen
    Ziaugra, Liuda
    Altshuler, David
    Shen, Yan
    [J]. NATURE, 2007, 449 (7164) : 851 - U3
  • [9] Quantifying heterogeneity in a meta-analysis
    Higgins, JPT
    Thompson, SG
    [J]. STATISTICS IN MEDICINE, 2002, 21 (11) : 1539 - 1558
  • [10] Assessing heterogeneity in meta-analysis:: Q statistic or I2 index?
    Huedo-Medina, Tania B.
    Sanchez-Meca, Julio
    Marin-Martinez, Fulgencio
    Botella, Juan
    [J]. PSYCHOLOGICAL METHODS, 2006, 11 (02) : 193 - 206