Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning

被引:190
作者
Salalha, W
Dror, Y
Khalfin, RL
Cohen, Y [1 ]
Yarin, AL
Zussman, E
机构
[1] Technion Israel Inst Technol, Dept Mech Engn, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Chem Engn, IL-32000 Haifa, Israel
关键词
D O I
10.1021/la048536b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrospinning process was used successfully to embed single-walled carbon nanotubes (SWCNTs) in a poly(ethylene oxide) (PEO) matrix, forming composite nanofibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphiphilic alternating copolymer of styrene and sodium maleate. The resulting dispersions were stable, having a dark, smooth, ink-like appearance. For electrospinning, the dispersions were mixed with PEO solution in an ethanol/water mixture. The distribution and conformation of the nanotubes in the nanofibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nanotubes within the nanofibers to facilitate direct observation. Nanotube alignment within the nanofibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nanotubes were embedded in a straight and aligned form, while entangled nonseparated nanotubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electrospun nanofibers with embedded SWCNTs. This result is in pronounced distinction to the detrimental effect of incorporation of multiwalled carbon nanotubes on polymer orientation in electrospun nanofibers, as reported previously.
引用
收藏
页码:9852 / 9855
页数:4
相关论文
共 22 条
[1]  
Ajayan PM, 2001, TOP APPL PHYS, V80, P391
[2]  
[Anonymous], 1996, ULSI Technology
[3]   CONTROLLED ENVIRONMENT VITRIFICATION SYSTEM - AN IMPROVED SAMPLE PREPARATION TECHNIQUE [J].
BELLARE, JR ;
DAVIS, HT ;
SCRIVEN, LE ;
TALMON, Y .
JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE, 1988, 10 (01) :87-111
[4]   Deformation of carbon nanotubes in nanotube-polymer composites [J].
Bower, C ;
Rosen, R ;
Jin, L ;
Han, J ;
Zhou, O .
APPLIED PHYSICS LETTERS, 1999, 74 (22) :3317-3319
[5]   Aligned nanotubes [J].
Dai, LM ;
Patil, A ;
Gong, XY ;
Guo, ZX ;
Liu, LQ ;
Liu, Y ;
Zhu, DB .
CHEMPHYSCHEM, 2003, 4 (11) :1150-1169
[6]   Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning [J].
Dror, Y ;
Salalha, W ;
Khalfin, RL ;
Cohen, Y ;
Yarin, AL ;
Zussman, E .
LANGMUIR, 2003, 19 (17) :7012-7020
[7]   A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J].
Huang, ZM ;
Zhang, YZ ;
Kotaki, M ;
Ramakrishna, S .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (15) :2223-2253
[8]   Alignment of carbon nanotubes in a polymer matrix by mechanical stretching [J].
Jin, L ;
Bower, C ;
Zhou, O .
APPLIED PHYSICS LETTERS, 1998, 73 (09) :1197-1199
[9]   Electrospinning of continuous carbon nanotube-filled nanofiber yarns [J].
Ko, F ;
Gogotsi, Y ;
Ali, A ;
Naguib, N ;
Ye, HH ;
Yang, GL ;
Li, C ;
Willis, P .
ADVANCED MATERIALS, 2003, 15 (14) :1161-1165
[10]  
KO F, 2002, P AM I AER ASTR, P1779