Fault isolation in nonlinear systems with structured partial principal component analysis and clustering analysis

被引:12
作者
Huang, YB
McAvoy, TJ [1 ]
Gertler, J
机构
[1] Univ Maryland, Dept Chem Engn, College Pk, MD 20740 USA
[2] Univ Maryland, Syst Res Inst, College Pk, MD 20740 USA
[3] George Mason Univ, Sch Informat Technol, Fairfax, VA 22030 USA
关键词
fault isolation; nonlinear systems; structured partial PCA; clustering analysis;
D O I
10.1002/cjce.5450780316
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Partial principal component analysis (PCA) and parity relations are proven to be useful methods in fault isolation. To overcome the limitation of applying partial PCA to nonlinear problems, a new approach utilizing clustering analysis is proposed. By dividing a partial data set into smaller subsets, one can build more accurate PCA models with fewer principal components, and isolate faults with higher precision. Simulations on a 2 x 2 nonlinear system and the Tennessee Eastman (TE) process show the advantages of using the clustered partial PCA method over other nonlinear approaches.
引用
收藏
页码:569 / 577
页数:9
相关论文
共 25 条
[1]  
CHEN G, 1997, P ADCHEM 97 BANFF CA, P73
[2]   Damage effect in the fracture toughness of nodular cast iron [J].
Dong, MJ ;
Berdin, C ;
Beranger, AS ;
Prioul, C .
JOURNAL DE PHYSIQUE IV, 1996, 6 (C6) :65-74
[3]   A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM [J].
DOWNS, JJ ;
VOGEL, EF .
COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) :245-255
[4]   A 2ND GENERATION NONLINEAR FACTOR-ANALYSIS [J].
ETEZADIAMOLI, J ;
MCDONALD, RP .
PSYCHOMETRIKA, 1983, 48 (03) :315-342
[5]   Isolation enhanced principal component analysis [J].
Gertler, J ;
Li, WH ;
Huang, YB ;
McAvoy, T .
AICHE JOURNAL, 1999, 45 (02) :323-334
[6]  
Gertler J., 1998, FAULT DETECTION DIAG
[7]  
GERTLER J, 1990, AUTOMATICA, V26, P9
[8]  
Gertler J., 1997, IFAC SAFEPROCESS S H, P837
[9]  
GNANADESIKAN R, 1977, METHODS STAT DATA AN
[10]  
Hartigan J. A., 1975, CLUSTERING ALGORITHM