A comparison of three image-object methods for the multiscale analysis of landscape structure

被引:271
作者
Hay, GJ
Blaschke, T
Marceau, DJ
Bouchard, A
机构
[1] Univ Montreal, Geocomp Lab, Dept Geog, Montreal, PQ H3C 3J, Canada
[2] Salzburg Univ, Dept Geog & Geoinformat, A-5020 Salzburg, Austria
[3] Univ Montreal, Inst Rech Biol Vegetale, Montreal, PQ H1X 2B2, Canada
关键词
complex systems theory; fractal net evolution approach; image-objects; multiscale object-specific analysis;
D O I
10.1016/S0924-2716(02)00162-4
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Within the conceptual framework of Complex Systems, we discuss the importance and challenges in extracting and linking multiscale objects from high-resolution remote sensing imagery to improve the monitoring, modeling and management of complex landscapes. In particular, we emphasize that remote sensing data are a particular case of the modifiable areal unit problem (MAUP) and describe how image-objects provide a way to reduce this problem. We then hypothesize that multiscale analysis should be guided by the intrinsic scale of the dominant landscape objects composing a scene, and describe three different multiscale image-processing techniques with the potential to achieve this. Each of these techniques, i.e., Fractal Net Evolution Approach (FNEA), Linear Scale-Space and Blob-Feature Detection (SS), and Multiscale Object-Specific Analysis (MOSA), facilitates the multiscale pattern analysis, exploration and hierarchical linking of image-objects based on methods that derive spatially explicit multiscale contextual information from a single resolution of remote sensing imagery. We then outline the weaknesses and strengths of each technique and provide strategies for their improvement. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:327 / 345
页数:19
相关论文
共 52 条
[1]  
Allen T. F. H., 1982, Hierarchy: perspectives for ecological complexity
[2]  
[Anonymous], 1999, FRAGILE DOMINION COM
[3]  
[Anonymous], 2001, GEOBITGIS
[4]  
Baatz M., 2000, ANGEW GEOGRAPHISCHE, P12, DOI DOI 10.3390/RS5010183
[5]  
Beucher S., 1979, INT WORKSH IM PROC R
[6]   RECOGNITION-BY-COMPONENTS - A THEORY OF HUMAN IMAGE UNDERSTANDING [J].
BIEDERMAN, I .
PSYCHOLOGICAL REVIEW, 1987, 94 (02) :115-147
[7]  
BLASCHKE T, 2001, P SOC PHOTO-OPT INS, V4545, P35
[8]  
Blaschke T., 2000, ENV INFORM PLANNING, V2, P555
[9]  
BLASCHKE T, 2001, GIS Z GEOINFORMATION, P12
[10]  
Blaschke T., 2001, INT ARCH PHOTOGRAMME, V34, P22