A Lyapunov function for vehicles with lift and drag: Stability of gliding

被引:12
作者
Bhatta, P [1 ]
Leonard, NE [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
D O I
10.1109/CDC.2004.1429394
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The energy of a mechanical system naturally provides a Lyapunov function to prove stability of steady motions. This is no longer the case when the system is subject to aerodynamic forces. We derive a Lyapunov function to prove stability of steady, gliding motions for vehicles subject to lift and drag. We make use of a conservation law derived by Lanchester in his original phugoid m,ode model and in so doing prove conditions under which Lanchester's simplifying assumptions are valid. We apply the results to prove stability and estimate the region of attraction for an underwater glider.
引用
收藏
页码:4101 / 4106
页数:6
相关论文
共 15 条
[1]  
[Anonymous], 2003, P 13 INT S UNMANNED
[2]  
Bhatta P, 2002, IEEE DECIS CONTR P, P2081, DOI 10.1109/CDC.2002.1184836
[3]   Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem [J].
Bloch, AM ;
Leonard, NE ;
Marsden, JE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (12) :2253-2270
[4]  
CHANG DE, 2000, UNPUB
[5]   Seaglider: A long-range autonomous underwater vehicle for oceanographic research [J].
Eriksen, CC ;
Osse, TJ ;
Light, RD ;
Wen, T ;
Lehman, TW ;
Sabin, PL ;
Ballard, JW ;
Chiodi, AM .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2001, 26 (04) :424-436
[6]  
Fiorelli E., 2003, P 13 INT S UNM UNT S, P1
[8]  
Khalil HK., 2002, Nonlinear Systems, V3
[9]  
Lanchester F.W., 1908, Aerodonetics
[10]   Model-based feedback control of autonomous underwater gliders [J].
Leonard, NE ;
Graver, JG .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2001, 26 (04) :633-645