Ethanol-induced water stress in yeast

被引:128
作者
Hallsworth, JE [1 ]
机构
[1] Kumamoto Inst Technol, Dept Appl Microbial Technol, Kumamoto 860, Japan
来源
JOURNAL OF FERMENTATION AND BIOENGINEERING | 1998年 / 85卷 / 02期
关键词
compatible solutes; ethanol toxicity; gene expression; glycerol; microbial ecology; osmotic stress; trehalose; water activity; yeast;
D O I
10.1016/S0922-338X(97)86756-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This review considers the effect of ethanol-induced water stress on yeast metabolism and integrity. Ethanol causes water stress by lowering water activity (a(w)) and thereby interferes with hydrogen bonding within and between hydrated cell components, ultimately disrupting enzyme and membrane structure and function. The impact of ethanol on the energetic status of water is considered in relation to cell metabolism. Even moderate ethanol concentrations (5 to 10%, w/v) cause a sufficient reduction of a(w) to have metabolic consequences. When exposed to ethanol, cells synthesize compatible solutes such as glycerol and trehalose that protect against water stress and hydrogen-bond disruption. Ethanol affects the control of gene expression by the mechanism that is normally associated with (so-called) osmotic control. Furthermore, ethanol-induced water stress has ecological implications.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 170 条
[1]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[2]   DETERMINATION AND CORRELATION OF THE WATER ACTIVITY OF PROPYLENE-GLYCOL SOLUTIONS [J].
ALZAMORA, SM ;
CHIRIFE, J ;
GERSCHENSON, LN .
FOOD RESEARCH INTERNATIONAL, 1994, 27 (01) :65-67
[3]   GROWTH RATE PATTERNS OF SO-CALLED OSMOPHILIC AND NON-OSMOPHILIC YEASTS IN SOLUTIONS OF POLYETHYLENE GLYCOL [J].
ANAND, JC ;
BROWN, AD .
JOURNAL OF GENERAL MICROBIOLOGY, 1968, 52 :205-&
[4]   MODES OF INTERACTION OF CRYOPROTECTANTS WITH MEMBRANE PHOSPHOLIPIDS DURING FREEZING [J].
ANCHORDOGUY, TJ ;
RUDOLPH, AS ;
CARPENTER, JF ;
CROWE, JH .
CRYOBIOLOGY, 1987, 24 (04) :324-331
[5]  
ARAKAWA T, 1984, J BIOL CHEM, V259, P4979
[6]   STABILIZATION OF PROTEIN-STRUCTURE BY SUGARS [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1982, 21 (25) :6536-6544
[7]   THE STABILIZATION OF PROTEINS BY OSMOLYTES [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOPHYSICAL JOURNAL, 1985, 47 (03) :411-414
[8]   MECHANISM OF PROTEIN SALTING IN AND SALTING OUT BY DIVALENT-CATION SALTS - BALANCE BETWEEN HYDRATION AND SALT BINDING [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1984, 23 (25) :5912-5923
[9]   CONCOMITANT APPEARANCE OF INTRINSIC THERMOTOLERANCE AND STORAGE OF TREHALOSE IS SACCHAROMYCES-CEREVISIAE DURING EARLY RESPIRATORY PHASE OF BATCH-CULTURE IS CIF1-DEPENDENT [J].
ATTFIELD, PV ;
KLETSAS, S ;
HAZELL, BW .
MICROBIOLOGY-UK, 1994, 140 :2625-2632