Robust Facial Expression Recognition Using Selected Wavelet Moment Invariants

被引:6
作者
Zhi, Ruicong [1 ]
Ruan, Qiuqi [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
来源
PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL IV | 2009年
关键词
D O I
10.1109/GCIS.2009.217
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel facial expression recognition method by exit-acting the wavelet moment invariants of the images as feature vectors, and using AdaBoost to select effective features. Wavelet moment invariants can present the facial expressions effectively and invariant under translation, scaling and rotation To reduce the dimensions and eliminate the redundancy of feature vectors, we utilize modified AdaBoost algorithm to select the combination of the effective features that best classify the samples Experimental results indicate that the proposed method outperforms conventional methods, such as Gabor and Zernike moments.
引用
收藏
页码:508 / 512
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1998, 3 IEEE INT C AUT FAC
[2]  
[Anonymous], HDB FACE RECOGNITION
[3]  
BARTLETT M, 2003, IEEE CVPR WORK COMPU
[4]   A principal component analysis of facial expressions [J].
Calder, AJ ;
Burton, AM ;
Miller, P ;
Young, AW ;
Akamatsu, S .
VISION RESEARCH, 2001, 41 (09) :1179-1208
[5]  
Ekman P., 1978, CITY
[6]   Automatic facial expression analysis: a survey [J].
Fasel, B ;
Luettin, J .
PATTERN RECOGNITION, 2003, 36 (01) :259-275
[7]  
Freund Y., 1999, Journal of Japanese Society for Artificial Intelligence, V14, P771
[8]  
Jiang L., 2004, J LUOYANG U, V19, P14
[9]   Automatic analysis of facial expressions: The state of the art [J].
Pantic, M ;
Rothkrantz, LJM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (12) :1424-1445
[10]   Discriminative wavelet shape descriptors for recognition of 2-D patterns [J].
Shen, DG ;
Ip, HHS .
PATTERN RECOGNITION, 1999, 32 (02) :151-165