Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: Molecular dynamics calculations

被引:101
作者
Petrache, HI
Grossfield, A
MacKenzie, KR
Engelman, DM
Woolf, TB [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Biophys, Baltimore, MD 21205 USA
[3] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
glycophorin A transmembrane domain; membrane proteins; protein-lipid interactions; alpha-helix association; dimerization motif;
D O I
10.1006/jmbi.2000.4072
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Starting from the glycophorin A dimer structure determined by NMR, we performed simulations of both dimer and monomer forms in explicit lipid bilayers with constant normal pressure, lateral area, and temperature using the CHARMM potential. Analysis of the trajectories in four different Lipids reveals how Lipid chain length and saturation modulate the structural and energetic properties of transmembrane helices. Helix tilt, helix-helix crossing angle, and helix accessible volume depend on lipid type in a manner consistent with hydrophobic matching concepts: the most relevant Lipid property appears to be the bilayer thickness. Although the net helix-helix interaction enthalpy is strongly attractive, analysis of residue-residue interactions reveals significant unfavorable electrostatic repulsion between interfacial glycine residues previously shown to be critical for dimerization. Peptide volume is nearly conserved upon dimerization in all lipid types, indicating that the monomeric helices pack equally well with lipid as dimer helices do with one another. Enthalpy calculations indicate that the helix-environment interaction energy is lower in the dimer than in the monomer form, when solvated by unsaturated lipids. In all lipid environments there is a marked preference for lipids to interact with:peptide predominantly through one rather than both acyl chains. Although our trajectories are not long enough;to allow a full thermodynamic treatment, these results demonstrate that molecular dynamics simulations are a powerful method for investigating the protein-protein, protein-lipid, and lipid-lipid interactions that determine the structure, stability and dynamics of transmembrane alpha-helices in membranes. (C) 2000 Academic Press.
引用
收藏
页码:727 / 746
页数:20
相关论文
共 73 条
[1]  
Adams PD, 1996, PROTEINS, V26, P257, DOI 10.1002/(SICI)1097-0134(199611)26:3<257::AID-PROT2>3.3.CO
[2]  
2-O
[3]   Phospholipid component volumes: Determination and application to bilayer structure calculations [J].
Armen, RS ;
Uitto, OD ;
Feller, SE .
BIOPHYSICAL JOURNAL, 1998, 75 (02) :734-744
[4]  
Bezrukov SM, 1998, FARADAY DISCUSS, V111, P173
[5]   INTRAMEMBRANE HELIX-HELIX ASSOCIATION IN OLIGOMERIZATION AND TRANSMEMBRANE SIGNALING [J].
BORMANN, BJ ;
ENGELMAN, DM .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1992, 21 :223-242
[6]   Helix packing in membrane proteins [J].
Bowie, JU .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (05) :780-789
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]  
BROOKS CL, 1988, ADV CHEM PHYS, V71, P259
[9]   MODULATION OF RHODOPSIN FUNCTION BY PROPERTIES OF THE MEMBRANE BILAYER [J].
BROWN, MF .
CHEMISTRY AND PHYSICS OF LIPIDS, 1994, 73 (1-2) :159-180
[10]   INCORPORATION OF SURFACE-TENSION INTO MOLECULAR-DYNAMICS SIMULATION OF AN INTERFACE - A FLUID-PHASE LIPID BILAYER-MEMBRANE [J].
CHIU, SW ;
CLARK, M ;
BALAJI, V ;
SUBRAMANIAM, S ;
SCOTT, HL ;
JAKOBSSON, E .
BIOPHYSICAL JOURNAL, 1995, 69 (04) :1230-1245