The sensor protein KdpD inserts into the Escherichia coli membrane independent of the Sec translocase and YidC

被引:31
作者
Facey, SJ [1 ]
Kuhn, A [1 ]
机构
[1] Univ Hohenheim, Inst Microbiol & Mol Biol, D-70599 Stuttgart, Germany
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2003年 / 270卷 / 08期
关键词
Escherichia coli; membrane protein; protein translocation; epitope tag;
D O I
10.1046/j.1432-1033.2003.03531.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
KdpD is a sensor kinase protein in the inner membrane of Escherichia coli containing four transmembrane regions. The periplasmic loops connecting the transmembrane regions are intriguingly short and protease mapping allowed us to only follow the translocation of the second periplasmic loop. The results show that neither the Sec translocase nor the YidC protein are required for membrane insertion of the second loop of KdpD. To study the translocation of the first periplasmic loop a short HA epitope tag was genetically introduced into this region. The results show that also the first loop was translocated independently of YidC and the Sec translocase. We conclude that KdpD resembles a new class of membrane proteins that insert into the membrane without enzymatic assistance by the known translocases. When the second periplasmic loop was extended by an epitope tag to 27 amino acid residues, the membrane insertion of this loop of KdpD depended on SecE and YidC. To test whether the two periplasmic regions are translocated independently of each other, the KdpD protein was split between helix 2 and 3 into two approximately equal-sized fragments. Both constructed fragments, which contained KdpD-N (residues 1-448 of KdpD) and the KdpD-C (residues 444-894 of KdpD), readily inserted into the membrane. Similar to the epitope-tagged KdpD protein, only KdpD-C depended on the presence of the Sec translocase and YidC. This confirms that the four transmembrane helices of KdpD are inserted pairwise, each translocation event involving two transmembrane helices and a periplasmic loop.
引用
收藏
页码:1724 / 1734
页数:11
相关论文
共 46 条
[1]   SEC DEPENDENT AND SEC INDEPENDENT ASSEMBLY OF ESCHERICHIA-COLI INNER MEMBRANE-PROTEINS - THE TOPOLOGICAL RULES DEPEND ON CHAIN-LENGTH [J].
ANDERSSON, H ;
VONHEIJNE, G .
EMBO JOURNAL, 1993, 12 (02) :683-691
[2]   KORB PROTEIN OF PROMISCUOUS PLASMID RP4 RECOGNIZES INVERTED SEQUENCE REPETITIONS IN REGIONS ESSENTIAL FOR CONJUGATIVE PLASMID TRANSFER [J].
BALZER, D ;
ZIEGELIN, G ;
PANSEGRAU, W ;
KRUFT, V ;
LANKA, E .
NUCLEIC ACIDS RESEARCH, 1992, 20 (08) :1851-1858
[3]   In vivo membrane assembly of the E-coli polytopic protein, melibiose permease, occurs via a Sec-independent process which requires the protonmotive force [J].
Bassilana, M ;
Gwizdek, C .
EMBO JOURNAL, 1996, 15 (19) :5202-5208
[4]   Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor [J].
Beck, K ;
Wu, LF ;
Brunner, J ;
Müller, M .
EMBO JOURNAL, 2000, 19 (01) :134-143
[5]  
CAO GQ, 1994, J BIOL CHEM, V269, P26898
[6]   THE TRANSLOCATION OF NEGATIVELY CHARGED RESIDUES ACROSS THE MEMBRANE IS DRIVEN BY THE ELECTROCHEMICAL POTENTIAL - EVIDENCE FOR AN ELECTROPHORESIS-LIKE MEMBRANE TRANSFER MECHANISM [J].
CAO, GQ ;
KUHN, A ;
DALBEY, RE .
EMBO JOURNAL, 1995, 14 (05) :866-875
[7]   Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion [J].
Chen, MY ;
Samuelson, JC ;
Jiang, FL ;
Muller, M ;
Kuhn, A ;
Dalbey, RE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7670-7675
[8]   Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins [J].
Dalbey, RE ;
Kuhn, A .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 :51-+
[9]   ROLE FOR MEMBRANE-POTENTIAL IN THE SECRETION OF PROTEIN INTO THE PERIPLASM OF ESCHERICHIA-COLI [J].
DANIELS, CJ ;
BOLE, DG ;
QUAY, SC ;
OXENDER, DL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (09) :5396-5400
[10]   Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli [J].
de Gier, JWL ;
Scotti, PA ;
Sääf, A ;
Valent, QA ;
Kuhn, A ;
Luirink, J ;
von Heijne, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14646-14651