Restricted inactivation of serum response factor to the cardiovascular system

被引:210
作者
Miano, JM
Ramanan, N
Georger, MA
Bentley, KLD
Emerson, RL
Balza, RO
Qi, X
Weiler, H
Ginty, DD
Misra, RP
机构
[1] Univ Rochester, Sch Med, Cardiovasc Res Ctr, Aab Inst Biomed Sci, Rochester, NY 14642 USA
[2] Univ Rochester, Sch Med, Electron Microscope Res Core, Rochester, NY 14642 USA
[3] Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Dept Neurosci, Baltimore, MD 21205 USA
[4] Med Coll Wisconsin, Dept Biochem, Milwaukee, WI 53226 USA
[5] Blood Res Inst, Milwaukee, WI 53226 USA
关键词
cre recombinase; knockout; myocardin; SM22; alpha;
D O I
10.1073/pnas.0406041101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Serum response factor (SRF) directs programs of gene expression linked to growth and muscle differentiation. To investigate the role of SRF in cardiovascular development, we generated mice in which SRF is knocked out in >80% of cardiomyocytes and >50% of vascular smooth muscle cells (SMC) through SM22alpha-Cre-mediated excision of SRF's promoter and first exon. Mutant mice display vascular patterning, cardiac looping, and SRF-dependent gene expression through embryonic day (e)9.5. At e10.5, attenuation in cardiac trabeculation and compact layer expansion is noted, with an attendant decrease in vascular SMC recruitment to the dorsal aorta. Ultrastructurally, cardiac sarcomeres and Z disks are highly disorganized in mutant embryos. Moreover, SRF mutant mice exhibit vascular SMC lacking organizing actin/intermediate filament bundles. These structural defects in the hear tand vasculature coincide with decreases in SRF-dependent gene expression, such that by e11.5, when mutant embryos succumb to death, no SRF-dependent mRNA expression is evident. These results suggest a vital role for SRF in contractile/cytoskeletal architecture necessary for the proper assembly and function of cardiomyocytes and vascular SMC.
引用
收藏
页码:17132 / 17137
页数:6
相关论文
共 36 条
  • [1] Serum response factor function and dysfunction in smooth muscle
    Camoretti-Mercado, B
    Dulin, NO
    Solway, J
    [J]. RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2003, 137 (2-3) : 223 - 235
  • [2] Chai J, 2002, J PHYSIOL PHARMACOL, V53, P147
  • [3] Myocardin: A component of a molecular switch for smooth muscle differentiation
    Chen, JY
    Kitchen, CM
    Streb, JW
    Miano, JM
    [J]. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2002, 34 (10) : 1345 - 1356
  • [4] CHU X, 2000, AM J PHYSIOL, V284, pH1827
  • [5] Avian serum response factor expression restricted primarily to muscle cell lineages is required for alpha-actin gene transcription
    Croissant, JD
    Kim, JH
    Eichele, G
    Goering, L
    Lough, J
    Prywes, R
    Schwartz, RJ
    [J]. DEVELOPMENTAL BIOLOGY, 1996, 177 (01) : 250 - 264
  • [6] Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation
    Du, KL
    Ip, HS
    Li, J
    Chen, M
    Dandre, F
    Yu, W
    Lu, MM
    Owens, GK
    Parmacek, MS
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (07) : 2425 - 2437
  • [7] Escalante R, 1998, DEVELOPMENT, V125, P3801
  • [8] The MADS-box transcription factor SrfA is required for actin cytoskeleton organization and spore coat stability during Dictyostelium sporulation
    Escalante, R
    Yamada, Y
    Cotter, D
    Sastre, L
    Sameshima, M
    [J]. MECHANISMS OF DEVELOPMENT, 2004, 121 (01) : 51 - 56
  • [9] Functional genomic analysis of C-elegans chromosome I by systematic RNA interference
    Fraser, AG
    Kamath, RS
    Zipperlen, P
    Martinez-Campos, M
    Sohrmann, M
    Ahringer, J
    [J]. NATURE, 2000, 408 (6810) : 325 - 330
  • [10] Guillemin K, 1996, DEVELOPMENT, V122, P1353