Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters

被引:151
作者
Mahmoud, MS [1 ]
Shi, P
机构
[1] United Arab Emirates Univ, Coll Engn, Al Ain, U Arab Emirates
[2] Arab Acad Sci & Technol, Fac Engn, Alexandria, Egypt
[3] Def Sci & Technol Org, Lab Operat Div, Edinburgh, SA 5111, Australia
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 2003年 / 50卷 / 01期
关键词
bounded uncertainties; Kalman filter; linear matrix inequalities (LMIs); Markovian jump parameters; time-lag systems;
D O I
10.1109/TCSI.2002.807504
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of continuous-time Kalman filtering for a class of linear, uncertain time-lag systems with randomly jumping parameters is considered. The parameter uncertainties are norm bounded and the transitions of the jumping parameters are governed by a finite-state Markov process. We establish LMI-based sufficient conditions for stochastic stability. The conditions under which a linear delay-less state estimator guarantees that the estimation error covariance lies within a prescribed bound for all admissible uncertainties are investigated. It is established that a robust Kalman filter algorithm can be determined in terms of two Riccati equations involving scalar parameters. The developed theory is illustrated by a numerical example.
引用
收藏
页码:98 / 105
页数:8
相关论文
共 21 条
[1]  
Anderson B., 1979, OPTIMAL FILTERING
[2]  
BERNSTEIN DS, 1991, SYSTEMS CONTROL LETT, V16, P309
[3]  
BINGULAC S, 1993, ALGORITHMS COMPUTER
[4]  
DAVIS M, 1992, MARKOV MODELS OPTIMI
[5]  
DORATO P, 1990, RECENT ADV ROBUST CO
[6]   CONTROL OF A HYBRID CONDITIONALLY LINEAR GAUSSIAN PROCESS [J].
ELLIOTT, RJ ;
SWORDER, DD .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (01) :75-85
[7]   STOCHASTIC STABILITY PROPERTIES OF JUMP LINEAR-SYSTEMS [J].
FENG, XB ;
LOPARO, KA ;
JI, YD ;
CHIZECK, HJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (01) :38-53
[8]   AN OPTIMAL STOCHASTIC PRODUCTION PLANNING PROBLEM WITH RANDOMLY FLUCTUATING DEMAND [J].
FLEMING, WH ;
SETHI, SP ;
SONER, HM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (06) :1494-1502
[9]  
Fu M., 1992, International Journal of Robust and Nonlinear Control, V2, P87, DOI 10.1002/rnc.4590020202
[10]  
Kushner H J., 1967, Stochastic Stability and Control