Uncertainties in the fate of nitrogen I: An overview of sources of uncertainty illustrated with a Dutch case study

被引:48
作者
Kroeze, C
Aerts, R
van Breemen, N
van Dam, D
van der Hoek, K
Hofschreuder, P
Hoosbeek, M
de Klein, J
Kros, H
van Oene, H
Oenema, O
Tietema, A
van der Veeren, R
de Vries, W
机构
[1] Univ Wageningen & Res Ctr, Environm Syst Anal Grp, NL-6700 DD Wageningen, Netherlands
[2] Free Univ Amsterdam, Amsterdam, Netherlands
[3] Netherlands Inst Publ Hlth & Environm, Bilthoven, Netherlands
[4] Alterra Green World Res, Wageningen, Netherlands
[5] Univ Amsterdam, NL-1012 WX Amsterdam, Netherlands
关键词
accumulation; ammonia; denitrification; leaching; nitrogen budget; nitrogen; the Netherlands;
D O I
10.1023/A:1023339106213
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
This study focuses on the uncertainties in the 'fate' of nitrogen (N) in the Netherlands. Nitrogen inputs into the Netherlands in products, by rivers, and by atmospheric deposition, and microbial and industrial fixation of atmospheric N(2) amount to about 4450 Gg N y(-1). About 60% of this N is transported out of the Netherlands in products. The fate of the remaining 40%, however, is less clear. We discuss uncertainties in losses to the atmosphere (as ammonia or through denitrification), by leaching and runoff, and in N accumulation in biomass and soils. These processes may account for the fate of about 40% of the N in the Netherlands, and for the fate of about 60% of the N in Dutch agricultural soils. Reducing uncertainties in the estimates of these fluxes is necessary for reducing the impact of excess N in the environment. In particular, monitoring the environmental effects of ammonia emissions and nitrate leaching to groundwater and aquatic systems requires an increased understanding of the fate of N. Uncertainties arise because (1) some N fluxes cannot be measured directly and are usually quantified indirectly as the balance in N budgets, (2) direct measurements of N fluxes have inevitable inaccuracies, ( 3) lack of experimental data and other information (e. g. statistics) needed for upscaling, (4) large spatial and temporal variability of fluxes, and (5) poor understanding of the processes involved. These uncertainties can be reduced by additional experimental studies and by further development of process-based models and N budget studies. We prioritize these future research needs according to a range of different criteria.
引用
收藏
页码:43 / 69
页数:27
相关论文
共 144 条
[1]  
Aarts HFM, 1999, NETH J AGR SCI, V47, P153
[2]  
AARTS HFM, 2000, THESIS WAGENINGEN U
[3]   NITROGEN SATURATION IN NORTHERN FOREST ECOSYSTEMS [J].
ABER, JD ;
NADELHOFFER, KJ ;
STEUDLER, P ;
MELILLO, JM .
BIOSCIENCE, 1989, 39 (06) :378-386
[4]   NITROGEN CYCLING AND NITROGEN SATURATION IN TEMPERATE FOREST ECOSYSTEMS [J].
ABER, JD .
TRENDS IN ECOLOGY & EVOLUTION, 1992, 7 (07) :220-224
[5]   Atmospheric nitrogen deposition affects potential denitrification and N2O emission from feat soils in the Netherlands [J].
Aerts, R .
SOIL BIOLOGY & BIOCHEMISTRY, 1997, 29 (07) :1153-1156
[6]  
Aerts R, 1999, ECOLOGY, V80, P2170, DOI 10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO
[7]  
2
[8]  
Aerts R, 1999, ENVIRONM POLLUT SER, V3, P85
[9]   NITROGEN SATURATION OF TERRESTRIAL ECOSYSTEMS [J].
AGREN, GI ;
BOSATTA, E .
ENVIRONMENTAL POLLUTION, 1988, 54 (3-4) :185-197
[10]   Agricultural practices and diffuse nitrogen pollution Denmark: Empirical leaching and catchment models [J].
Andersen, HE ;
Kronvang, B ;
Larsen, SE .
WATER SCIENCE AND TECHNOLOGY, 1999, 39 (12) :257-264