Numerical analysis of the Balitsky-Kovchegov equation with running coupling: Dependence of the saturation scale on nuclear size and rapidity

被引:112
作者
Albacete, JL
Armesto, N
Milhano, JG
Salgado, CA
Wiedemann, UA
机构
[1] Univ Cordoba, Dept Fis, E-14071 Cordoba, Spain
[2] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland
[3] Inst Super Tecn, CENTRA, P-1049001 Lisbon, Portugal
来源
PHYSICAL REVIEW D | 2005年 / 71卷 / 01期
关键词
D O I
10.1103/PhysRevD.71.014003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the effects of including a running coupling constant in high-density QCD evolution. For fixed coupling constant, QCD evolution preserves the initial dependence of the saturation momentum Q(s) on the nuclear size A and results in an exponential dependence on rapidity Y, Q(s)(2)(Y)=Q(s)(2)(Y-0)exp[(alpha) over bar (s)d(Y-Y-0)]. For the running coupling case, we rederive analytical estimates for the A and Y dependences of the saturation scale and test them numerically. The A dependence of Q(s) vanishes proportional to1/rootY for large A and Y. The Y dependence is reduced to Q(s)(2)(Y)proportional toexp(Delta'rootY+X), where we find numerically Delta'similar or equal to3.2. We study the behavior of the gluon distribution at large transverse momentum, characterizing it by an anomalous dimension 1-gamma, which we define in a fixed region of small dipole sizes. In contrast to previous analytical work, we find a marked difference between the fixed coupling (gammasimilar or equal to0.65) and running coupling (gammasimilar to0.85) results. Our numerical findings show that both a scaling function depending only on the variable rQ(s) and the perturbative double-leading-logarithmic expression provide equally good descriptions of the numerical solutions for very small r values below the so-called scaling window.
引用
收藏
页码:014003 / 1
页数:12
相关论文
共 91 条
[1]   Energy dependence of the Cronin effect from nonlinear QCD evolution [J].
Albacete, JL ;
Armesto, N ;
Kovner, A ;
Salgado, CA ;
Wiedemann, UA .
PHYSICAL REVIEW LETTERS, 2004, 92 (08)
[2]   An anomalous dimension for small x evolution [J].
Altarelli, G ;
Ball, RD ;
Forte, S .
NUCLEAR PHYSICS B, 2003, 674 (1-2) :459-483
[3]   Solving the BFKL equation in the next-to-leading approximation [J].
Andersen, JR ;
Vera, AS .
PHYSICS LETTERS B, 2003, 567 (1-2) :116-124
[4]   The gluon Green's function in the BFKL approach at next-to-leading logarithmic accuracy [J].
Andersen, JR ;
Vera, AS .
NUCLEAR PHYSICS B, 2004, 679 (1-2) :345-362
[5]   Parton densities and dipole cross-sections at small x in large nuclei [J].
Armesto, N ;
Braun, MA .
EUROPEAN PHYSICAL JOURNAL C, 2001, 20 (03) :517-522
[6]  
Armesto N, 2004, ACTA PHYS POL B, V35, P213
[7]   The 2nd order corrections to the hard pomeron and the running coupling [J].
Armesto, N ;
Bartels, J ;
Braun, MA .
PHYSICS LETTERS B, 1998, 442 (1-4) :459-469
[8]  
ARMESTO N, IN PRESS PHYS REV LE, P34501
[9]   QCD evolution of the gluon density in a nucleus [J].
Ayala, AL ;
Ducati, MBG ;
Levin, EM .
NUCLEAR PHYSICS B, 1997, 493 (1-2) :305-353
[10]   Scattering of color dipoles: From low to high energies [J].
Babansky, A ;
Balitsky, I .
PHYSICAL REVIEW D, 2003, 67 (05)