Self-assembly of flat sheets into closed surfaces

被引:12
作者
Alben, Silas [1 ]
Brenner, Michael P. [1 ]
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 05期
关键词
D O I
10.1103/PhysRevE.75.056113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A recent experiment [Boncheva Proc. Natl. Acad. Sci. U.S.A. 102, 3924 (2005)] introduced the possibility of initiating the self-assembly of a three-dimensional structure from a flat elastic sheet. The ultimate utility of this method for assembly depends on whether it leads to incorrect, metastable structures. Here we examine how the number of metastable states depends on the sheet shape and thickness. Using simulations and theory, we identify out-of-plane buckling as the key event leading to metastability. The buckling strain that arises from joining edges of a planar sheet can be estimated using the theory of dislocations in elastic media. The number of metastable states increases rapidly with increasing variability in the boundary curvature and decreasing sheet thickness.
引用
收藏
页数:8
相关论文
共 19 条
[1]   Magnetic self-assembly of three-dimensional surfaces from planar sheets [J].
Boncheva, M ;
Andreev, SA ;
Mahadevan, L ;
Winkleman, A ;
Reichman, DR ;
Prentiss, MG ;
Whitesides, S ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (11) :3924-3929
[2]   Conical surfaces and crescent singularities in crumpled sheets [J].
Cerda, E ;
Mahadevan, L .
PHYSICAL REVIEW LETTERS, 1998, 80 (11) :2358-2361
[3]   Unconventional nanofabrication [J].
Gates, BD ;
Xu, QB ;
Love, JC ;
Wolfe, DB ;
Whitesides, GM .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2004, 34 :339-372
[4]   STATISTICAL-MECHANICS AND MORPHOLOGY OF VERY SMALL ATOMIC CLUSTERS [J].
HOARE, MR ;
MCINNES, J .
FARADAY DISCUSSIONS, 1976, 61 :12-24
[5]   Capillary forces and structuring in layers of colloid particles [J].
Kralchevsky, PA ;
Denkov, ND .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2001, 6 (04) :383-401
[6]  
Landau E.M., 1986, THEORY ELASTICITY
[7]  
Lee I, 2002, ADV MATER, V14, P572, DOI 10.1002/1521-4095(20020418)14:8<572::AID-ADMA572>3.0.CO
[8]  
2-B
[9]   Boundary layer analysis of the ridge singularity in a thin plate [J].
Lobkovsky, AE .
PHYSICAL REVIEW E, 1996, 53 (04) :3750-3759
[10]   Properties of ridges in elastic membranes [J].
Lobkovsky, AE ;
Witten, TA .
PHYSICAL REVIEW E, 1997, 55 (02) :1577-1589